Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens delivers world's first vegetable oil transformer in the 420 kV capacity range

26.02.2014

The first impressively environmentally friendly transformer in the 420 kV capacity range from Siemens has been commissioned by the Baden-Wuerttemberg power grid operator TransnetBW.

The world's first power transformer insulated and cooled using vegetable oil links the 380 kV extra-high voltage level with the 110 kV grid of the subordinate distribution grid operator in the Bruchsal substation.


Activation of the world's first power transformer by Siemens, insulated and cooled using vegetable oil in the Bruchsal substation.

This ensures that the power transported via the extra-high voltage lines to Bruchsal is fed into the 110 kV grids of the distribution system operator and that this power arrives safely and reliably at households and industry throughout the region.

The special feature of this transformer is the material that it is filled with. For this marks the first time that vegetable oil is used with this voltage category instead of mineral oil for insulation and cooling. This vegetable oil is not only more environmentally friendly, but is also much less flammable than mineral oil.

... more about:
»capacity

"The use of this groundwater-neutral and bio-degradable insulating oil, with its high level of environmental compatibility was the decisive factor for us choosing this transformer", stresses Michael Schäfer, head of systems technology at TransnetBW. The insulating oil for this new transformer is produced solely from renewable, plant resources and is completely bio-degradable.

This is but one of Siemens' decisive contributions to environmental sustainability. The new power transformer for the Bruchsal-Kändelweg substation is the world's first transformer at the 420 kV extra-high voltage level for which no water hazard classification must be issued. As a result, this transformer can be installed and operated in water conservation areas or in zones subject to stringent environmental protection restrictions.

"The properties of this vegetable oil are not only beneficial to the environment, but also offer the customer cost advantages over transformers cooled with conventional mineral oil", explained Beatrix Natter, CEO of the Transformers business unit at Siemens Energy. "The bio-degradability of the insulating oil means that additional collecting vessels and separation systems are no longer required at the installation location, resulting in cost savings for these items."

Other important aspects are the substantially higher flashpoint and combustion point of the vegetable oil as compared to that of the mineral oil used up to now. The lower flammability of this insulating oil also provides the transformer with a higher fire protection classification. This means that the fire protection system can be optimized accordingly and that the transformer can also be operated favorably in densely populated residential areas.

Vegetable-oil-based transformers and the associated service are part of Siemens' Environmental Portfolio. Around 43 percent of its total revenue stems from green products and solutions. That makes Siemens one of the world's leading providers of eco-friendly technology.

Contact

Mr. Torsten Wolf
Energy Sector

Tel: +49 (9131) 18-82532

Torsten Wolf | Siemens Power Transmission
Further information:
http://www.siemens.com

Further reports about: capacity

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>