Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Semiconductor devices: Under mounting stress

09.11.2012
The recently developed ability to measure physical changes in silicon when processed into microelectronic devices could improve fabrication techniques for even smaller circuits

Thinner semiconductor wafers to house electronic circuits are needed so that more computing power can be packed into ever-smaller electrical products.

Thinning, however, makes the wafers brittle and prone to warping or breaking. A technique for measuring the stress in those chips during production is now available1, thanks to developmental work led by Xiaowu Zhang at the A*STAR Institute of Microelectronics, Singapore. The resulting information could enable miniature but robust semiconductor devices.

The conversion from bare wafer to useful device can be an arduous one for a sheet of silicon, particularly when it is only a few millimeters thick. Fabrication processes can involve bombarding the wafer with a beam of ions, dipping it in corrosive acids to etch tiny structures, exposing it to plasmas for cleaning, or coating it in layers of hot metal to create electrical contacts. Then, the wafer must be fixed into a package.

Zhang and his co-workers designed and built stress sensors directly onto a silicon wafer to monitor the strain that such packaging exerts. They took advantage of the piezoresistive effect in silicon — when a force is applied to a silicon wafer, it pushes atoms closer together. In turn, the change in atom distribution alters the way an electrical current passes through the material, which can be measured as a change in resistance. Each stress sensor consisted of 16 resistors (see image). Since the piezoresistive properties of silicon are well known, Zhang and his co-workers could simply convert the changes in resistance to a corresponding change in stress.

By equally distributing 17 such sensors on the sample surface, the researchers monitored the stress in a silicon wafer during a number of common packaging processes. These included coating the wafer in a thin film and attaching a small bump of solder. They also embedded the sensors into a plastic test board, which they dropped repeatedly. Zhang and co-workers also developed a data acquisition system that could monitor the stresses during this impact test.

“Semiconductors are a multibillion-dollar industry,” explains Zhang. “This stress data should enable the design of novel packaging technologies and reduce the chance of device damage during processing and during daily use and accidents, such as dropping the device.”

Evaluating the stresses on a device wafer during other processes, including a technique known as ‘through-silicon via’, in which electrical connections are passed all the way through the wafer, will be the next step in the team’s research, says Zhang.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics.
Associated links
http://www.research.a-star.edu.sg/research/6580
Journal information
Zhang, X., Rajoo, R., Selvanayagam, C. S., Kumar, A., Rao, V. S. et al. Application of piezoresistive stress sensor in wafer bumping and drop impact test of embedded ultrathin device. IEEE Transactions on Components, Packaging and Manufacturing Technology 2, 935–943 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6580
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>