Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Semiconductor devices: Under mounting stress

09.11.2012
The recently developed ability to measure physical changes in silicon when processed into microelectronic devices could improve fabrication techniques for even smaller circuits

Thinner semiconductor wafers to house electronic circuits are needed so that more computing power can be packed into ever-smaller electrical products.

Thinning, however, makes the wafers brittle and prone to warping or breaking. A technique for measuring the stress in those chips during production is now available1, thanks to developmental work led by Xiaowu Zhang at the A*STAR Institute of Microelectronics, Singapore. The resulting information could enable miniature but robust semiconductor devices.

The conversion from bare wafer to useful device can be an arduous one for a sheet of silicon, particularly when it is only a few millimeters thick. Fabrication processes can involve bombarding the wafer with a beam of ions, dipping it in corrosive acids to etch tiny structures, exposing it to plasmas for cleaning, or coating it in layers of hot metal to create electrical contacts. Then, the wafer must be fixed into a package.

Zhang and his co-workers designed and built stress sensors directly onto a silicon wafer to monitor the strain that such packaging exerts. They took advantage of the piezoresistive effect in silicon — when a force is applied to a silicon wafer, it pushes atoms closer together. In turn, the change in atom distribution alters the way an electrical current passes through the material, which can be measured as a change in resistance. Each stress sensor consisted of 16 resistors (see image). Since the piezoresistive properties of silicon are well known, Zhang and his co-workers could simply convert the changes in resistance to a corresponding change in stress.

By equally distributing 17 such sensors on the sample surface, the researchers monitored the stress in a silicon wafer during a number of common packaging processes. These included coating the wafer in a thin film and attaching a small bump of solder. They also embedded the sensors into a plastic test board, which they dropped repeatedly. Zhang and co-workers also developed a data acquisition system that could monitor the stresses during this impact test.

“Semiconductors are a multibillion-dollar industry,” explains Zhang. “This stress data should enable the design of novel packaging technologies and reduce the chance of device damage during processing and during daily use and accidents, such as dropping the device.”

Evaluating the stresses on a device wafer during other processes, including a technique known as ‘through-silicon via’, in which electrical connections are passed all the way through the wafer, will be the next step in the team’s research, says Zhang.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics.
Associated links
http://www.research.a-star.edu.sg/research/6580
Journal information
Zhang, X., Rajoo, R., Selvanayagam, C. S., Kumar, A., Rao, V. S. et al. Application of piezoresistive stress sensor in wafer bumping and drop impact test of embedded ultrathin device. IEEE Transactions on Components, Packaging and Manufacturing Technology 2, 935–943 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6580
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>