Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New robot to reduce burden on care facilities

02.09.2009
The new robot, named RIBA (Robot for Interactive Body Assistance), is the first of its kind in the world, capable of safely lifting and moving a human patient of up to 61 kg from a bed to a wheelchair and back.

In an effort to cope with the challenges of an aging population, a new robot making use of the latest in sensor, control, information processing, mechanical and materials technology has been developed to assist personnel and patients at care facilities.


The product of joint research by RIKEN and Tokai Rubber Industries (TRI), the new robot, named RIBA (Robot for Interactive Body Assistance), is the first of its kind in the world, capable of safely lifting and moving a human patient of up to 61 kg from a bed to a wheelchair and back.

The task of lifting and moving a patient, carried out several times a day, is one of the most exhausting for care-givers. In assisting in this task, RIBA brings together cutting-edge sensor and information processing technology developed at RIKEN with materials technology developed at TRI, overcoming safety and performance limitations of its predecessor, an earlier model named RI-MAN. Using human-like arms equipped with high-precision tactile sensors and a body encased in a soft exterior of urethane foam, RIBA’s design guarantees patient safety and comfort.

As one part of a larger strategy to pursue advances in robot technology for care-giving support, the successful development of RIBA marks a critical step toward tackling the problems of an aging society. The RIKEN-TRI Collaborative Center for Human-Interactive Robot Research (RTC), where RIBA was developed, envisions bringing robots like RIBA to market in the near future.

For more information, please refer to the website of the RIKEN-TRI
Collaboration Center for Human-Interactive Robot Research (http://rtc.nagoya.riken.jp/RIBA/index-e.html).

For more information, please contact

Dr. Toshiharu Mukai
Robot Research Robot Sensor Systems Research Team
RIKEN-TRI Collaboration Center for Human-Interactive Robot Research
Tel: +81-(0) 52-736-5867 / fax: +81-(0) 52-736-5868
Ms. Saeko Okada (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-467-9443
Email: koho@riken.jp

Saeko Okada | Research asia research news
Further information:
http://rtc.nagoya.riken.jp/RIBA/index-e.html
http://www.researchsea.com

Further reports about: Assistance Human-Interactive Interactive RIBA RIKEN ROBOT TRI information processing

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>