Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New robot to reduce burden on care facilities

02.09.2009
The new robot, named RIBA (Robot for Interactive Body Assistance), is the first of its kind in the world, capable of safely lifting and moving a human patient of up to 61 kg from a bed to a wheelchair and back.

In an effort to cope with the challenges of an aging population, a new robot making use of the latest in sensor, control, information processing, mechanical and materials technology has been developed to assist personnel and patients at care facilities.


The product of joint research by RIKEN and Tokai Rubber Industries (TRI), the new robot, named RIBA (Robot for Interactive Body Assistance), is the first of its kind in the world, capable of safely lifting and moving a human patient of up to 61 kg from a bed to a wheelchair and back.

The task of lifting and moving a patient, carried out several times a day, is one of the most exhausting for care-givers. In assisting in this task, RIBA brings together cutting-edge sensor and information processing technology developed at RIKEN with materials technology developed at TRI, overcoming safety and performance limitations of its predecessor, an earlier model named RI-MAN. Using human-like arms equipped with high-precision tactile sensors and a body encased in a soft exterior of urethane foam, RIBA’s design guarantees patient safety and comfort.

As one part of a larger strategy to pursue advances in robot technology for care-giving support, the successful development of RIBA marks a critical step toward tackling the problems of an aging society. The RIKEN-TRI Collaborative Center for Human-Interactive Robot Research (RTC), where RIBA was developed, envisions bringing robots like RIBA to market in the near future.

For more information, please refer to the website of the RIKEN-TRI
Collaboration Center for Human-Interactive Robot Research (http://rtc.nagoya.riken.jp/RIBA/index-e.html).

For more information, please contact

Dr. Toshiharu Mukai
Robot Research Robot Sensor Systems Research Team
RIKEN-TRI Collaboration Center for Human-Interactive Robot Research
Tel: +81-(0) 52-736-5867 / fax: +81-(0) 52-736-5868
Ms. Saeko Okada (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-467-9443
Email: koho@riken.jp

Saeko Okada | Research asia research news
Further information:
http://rtc.nagoya.riken.jp/RIBA/index-e.html
http://www.researchsea.com

Further reports about: Assistance Human-Interactive Interactive RIBA RIKEN ROBOT TRI information processing

More articles from Power and Electrical Engineering:

nachricht A water-based, rechargeable battery
09.01.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht To jump or not to jump
09.01.2018 | Max-Planck-Institut für Dynamik und Selbstorganisation

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>