Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find That Some ‘Green’ Hot Water Systems Fail to Deliver on Promises

03.05.2013
Two researchers affiliated with the Virginia Tech College of Engineering have published a paper which reports that hot water recirculating systems touted as “green,” actually use both more energy and water than their standard counterparts.

Marc Edwards, the Charles P. Lunsford Professor of Civil and Environmental Engineering in the Virginia Tech College of Engineering, originated the efficiency study of the systems as part of an undergraduate design class six years ago. After a thorough analysis, the class concluded the claims as false, and that it “was thermodynamically impossible for these systems to save energy as claimed,” said Edwards.

The topic was selected as part of a dissertation by Randi Brazeau during her doctorate in Virginia Tech’s Charles E. Via Jr. Department of Civil and Environmental Engineering

. The results are presented in a paper published in the most recent issue of Journal of Green Building.

Brazeau, now an assistant professor of environmental science at Metropolitan State University of Denver, examined the energy and water savings of continuous hot water recirculating systems in a comparative, direct test versus traditional hot water systems in which consumers often wait for the cold water to flush down the drain before the water warms to a comfortable temperature for showering.

She found that the recirculation systems used 20 percent more energy even in the best possible scenario in which the water pump was only on for a few seconds before use, and in scenarios where the pump was always on, the recirculation systems could require more than double the energy to operate. The consumer pays for this extra energy in higher electric and fuel bills.

“Randi demonstrated that when all energy costs are accounted for, including that necessary to run the pump, the hot water recirculating systems always used much more energy than the conventional systems,” said Edwards.

A previous U.S. Department of Energy report and certain manufacturers claimed the recirculation devices would not only eliminate wait times, but also would save both water and energy. It also was assumed that because consumers did not need to wait for water to warm, the hot water recirculation systems would at minimum save water from being wasted. But that claim did not consider that it takes water to make energy, said Edwards.

The research found that the “so-called green” hot water recirculation systems used more net water than the conventional systems after accounting for water needed to produce the extra energy. “These are really consumer comfort and convenience devices, a luxury really, masquerading as ‘green’ or environmentally conscious devices,” Edwards said.

Other findings: On-demand electric systems operate with nearly 100 percent energy efficiency, but cannot be used in many circumstances dependent on scaling and incoming water temperature, and may require expensive upgrades to home electrical systems and use of low or ultra-low flow showerheads.

In many cases, hot water recirculating systems touted as “green” are not just a consumer choice, but required in some new homes and businesses in the United States, said Brazeau. But their energy savings, and therefore lessened environmental impact claimed by manufacturers “do not hold water,” she added.

Brazeau and Edwards calculated that a typical consumer with an electric water heater would pay as much as $158 more annually compared to systems without recirculation. More research, though, is necessary to better inform policy and decision-making by regulators, public health officials, manufacturers, and consumers, Edwards and Brazeau said.

Steven Mackay | Newswise
Further information:
http://www.vt.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>