Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Devise New, Stretchable Antenna for Wearable Health Monitoring

18.03.2014

Researchers from North Carolina State University have developed a new, stretchable antenna that can be incorporated into wearable technologies, such as health monitoring devices.

“Many researchers – including our lab – have developed prototype sensors for wearable health systems, but there was a clear need to develop antennas that can be easily incorporated into those systems to transmit data from the sensors, so that patients can be monitored or diagnosed,” says Dr. Yong Zhu, an associate professor of mechanical and aerospace engineering at NC State and senior author of a paper describing the work.


The extremely flexible antennas contain silver nanowires and can be incorporated into wearable health monitoring devices. Photo: Amanda Myers

The researchers wanted to develop an antenna that could be stretched, rolled or twisted and always return to its original shape, because wearable systems can be subject to a variety of stresses as patients move around.

To create an appropriately resilient, effective antenna, the researchers used a stencil to apply silver nanowires in a specific pattern and then poured a liquid polymer over the nanowires. When the polymer sets, it forms an elastic composite material that has the nanowires embedded in the desired pattern.

This patterned material forms the radiating element of a microstrip patch antenna. By manipulating the shape and dimensions of the radiating element, the researchers can control the frequency at which the antenna sends and receives signals. The radiating layer is then bonded to a “ground” layer, which is made of the same composite, except it has a continuous layer of silver nanowires embedded.

The researchers also learned that, while the antenna’s frequency does change as it is stretched (since that changes its dimensions), the frequency stays within a defined bandwidth. “This means it will still communicate effectively with remote equipment while being stretched,” Adams says. “In addition, it returns to its original shape and continues to work even after it has been significantly deformed, bent, twisted or rolled.” As the frequency changes almost linearly with the strain, the antenna can be used a wireless strain sensor as well.

“Other researchers have developed stretchable sensors, using liquid metal, for example,” Zhu says. “Our technique is relatively simple, can be integrated directly into the sensors themselves, and would be fairly easy to scale up.”

The work on the new, stretchable antenna builds on previous research from Zhu’s lab to create elastic conductors and multifunctional sensors using silver nanowires.

The paper, “Stretchable and Reversibly Deformable Radio Frequency Antennas Based on Silver Nanowires,” is published online in ACS Applied Materials & Interfaces. Lead author of the paper is Lingnan Song, an undergraduate at Zhejiang University who worked on the project at NC State during an exchange program. Co-authors include Amanda Myers, a Ph.D. student at NC State; and Dr. Jacob Adams, an assistant professor of electrical and computer engineering at NC State.

The work was supported in part by the National Science Foundation under grant EFRI-1240438 and by NSF’s ASSIST Engineering Research Center at NC State under grant EEC-1160483.

-shipman-

Note to Editors: The study abstract follows.

“Stretchable and Reversibly Deformable Radio Frequency Antennas Based on Silver Nanowires”

Authors: Lingnan Song, Amanda C. Myers, Jacob J. Adams, and Yong Zhu, North Carolina State University

Published: Online March 2014, ACS Applied Materials & Interfaces

DOI: 10.1021/am405972e

Abstract: We demonstrate a class of microstrip patch antennas that are stretchable, mechanically tunable and reversibly deformable. The radiating element of the antenna consists of highly conductive and stretchable material with screen-printed silver nanowires embedded in the surface layer of an elastomeric substrate. A 3-GHz microstrip patch antenna and a 6-GHz 2-element patch array are fabricated. Radiating properties of the antennas are characterized under tensile strain and agree well with the simulation results. The antenna is reconfigurable because the resonant frequency is a function of the applied tensile strain. The antenna is thus well suited for applications like wireless strain sensing. The material and fabrication technique reported here could be extended to achieve other types of stretchable antennas with more complex patterns and multi-layer structures.

Matt Shipman | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Cleanroom on demand
29.08.2016 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Spherical tokamaks could provide path to limitless fusion energy
29.08.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

3-D-printed structures 'remember' their shapes

29.08.2016 | Materials Sciences

From rigid to flexible

29.08.2016 | Life Sciences

Sensor systems identify senior citizens at risk of falling within 3 weeks

29.08.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>