Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Finds Bright Future for Alternative Energy with Greener Solar Cells

11.04.2012
Even alternative energy technologies can sometimes be a little greener, according to a Kansas State University graduate student's research.

Ayomi Perera, a doctoral student in chemistry, Sri Lanka, is working under Stefan Bossmann, professor of chemistry, to improve dye-sensitized solar cells. The cells are a solar technology that use a dye to help generate energy from sunlight. By creating a less toxic dye and combining it with a bacteria, Perera's solar cells are friendlier to the environment and living organisms -- making an alternative energy solution to fossil fuels even greener.

"Dye-sensitized solar cells, which are solar cells with light-absorbing dye, have been around for more than 20 years, but their highest efficiency has stayed close to 11 percent for some time," Perera said. "So the thought was that rather than trying to increase the efficiency, let's try to make to make the technology more green."

To make the solar cells greener and more efficient, Perera begins with the bacteria Mycobacterium smegmatis. A mycrobacterium is a type of pathogen that can cause diseases such as tuberculosis. Perera is using a species that is completely harmless and can be found in soil and cornflakes. It also produces the protein MspA, which can be used for numerous applications once it has been chemically purified.

After purification, Perera combines the protein with a synthesized dye that is less toxic than traditional dyes. The protein-dye mixture is coated onto individual solar cells -- which form large solar panels when assembled -- and is then tested with artificial sunlight to measure energy output.

"The idea is that the protein acts as a matrix for electron transfer for this dye that absorbs sunlight," Perera said. "We want the protein to be able to capture the electron that the dye gives out and then transfer that electron in one direction, thereby generating an electrical current."

Although the new dye-sensitized solar cells currently do not improve on the technology's ability to convert sunlight into electrical current, the technology is the first of its kind and could help low-cost solar cells become a more viable option in the alternative energy field.

"This type of research where you have a biodegradable or environmentally friendly component inside a solar cell has not been done before, and the research is still in its early stages right now," Perera said. "But we have noticed that it's working and that means that the protein is not decomposed in the light and electric generating conditions. Because of that we believe that we've actually made the first protein-incorporated solar cell."

In February, Perera was one of two Kansas State University graduate students named a winner at the ninth annual Capitol Graduate Research Summit in Topeka. She received a $500 scholarship from KansasBio and will present her poster, "Design of a 'Greener' Solar Cell using Mycobacterial Protein MspA," at the organization's board of director's meeting in May.

Perera said the summit benefited her research because it gave her the chance to share her work with state legislators in addition to the scientific community. As a result, legislators can understand the work and how it affects Kansas.

"We know that fossil fuels are going to run out in the very near future," Perera said. "Kansas is getting a reputation as one of the central places in the U.S. for alternative energy research because of the abundance of sunlight and wind. I want to contribute to that and to the betterment of humanity with this research."

Ayomi Perera, ayomee@k-state.edu

Ayomi Perera | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>