Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative sensor technology for industrial applications

08.10.2007
In many industrial application areas so-called multiphase flows determine efficiency and safety issues of processes and plants. Everyone might know such flows from carbonated soft drinks, where after opening a bottle carbon dioxide bubbles rise in the liquid.

In the industry multiphase flows occur, for instance, in chemical reactors, power plants and turbo machinery. At the Forschungszentrum Dresden-Rossendorf a new sensor was recently developed which enables for the first time measurement and visualization of complex flows of arbitrary substance mixtures with high spatial and temporal resolution.

The analysis and modeling of industrial processes with methods of the experimental and theoretical thermal fluid dynamics is one of the tasks of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf (FZD). Within the context of this work the new capacitance wire-mesh sensor was developed. This new sensor is a successor of the well known conductivity wire-mesh sensor, which was also developed at FZD and is currently being employed around the world. The conductivity wire mesh-sensor is based on the measurement of electrical conductivity in a flow cross-section and therefore only suited for the investigation of flow mixtures with an electrically conductive component, for example water-steam flows. The new capacitance wire-mesh sensor is now able to measure arbitrary substances, such as oil or other organic fluids. In this way, this sensor is applicable in a number of new fields, for example in process engineering and oil industry.

As the conductivity wire-mesh sensor the capacitance wire-mesh sensor consists of a set of wire electrodes stretched across a vessel or pipe in two slightly separated planes. Within one plane electrodes run in parallel whereas electrodes of different planes are perpendicular to each other. Thus, a grid of electrodes is formed in the cross-section (see figure). An associated electronics measures the electrical capacitance in all crossing points, which in turn is a measure of the dielectric constant of the substance surrounding each crossing point (the dielectric constant represents the extent to which a material concentrates the electrical field). The electronics is optimized to measure the tiny electrical capacitances of the crossing points which are in the range of only few Femtofarad (10-15 F).This can be done at very high time resolution of up to 10000 frames per second. Since different substances have different dielectric constant values, the sensor can discriminate phases or components. As an example the figure below shows a slug flow of air with a dielectric constant of 1 and silicone oil with a value of 2.7 in a pipe. Although the dielectric constants values of the two substances are rather close to each other, they are precisely distinguished by the capacitance wire-mesh sensor.

The capacitance wire-mesh sensor from the Forschungszentrum Dresden-Rossendorf may be employed in industrial applications where complex flow conditions are to be investigated. It does not require optical access to the flow as other measurement techniques do. The results of this work were recently published in the journal “Measurement Science and Technology”.

Christine Bohnet | alfa
Further information:
http://www.fzd.de
http://www.fz-rossendorf.de

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>