Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative sensor technology for industrial applications

08.10.2007
In many industrial application areas so-called multiphase flows determine efficiency and safety issues of processes and plants. Everyone might know such flows from carbonated soft drinks, where after opening a bottle carbon dioxide bubbles rise in the liquid.

In the industry multiphase flows occur, for instance, in chemical reactors, power plants and turbo machinery. At the Forschungszentrum Dresden-Rossendorf a new sensor was recently developed which enables for the first time measurement and visualization of complex flows of arbitrary substance mixtures with high spatial and temporal resolution.

The analysis and modeling of industrial processes with methods of the experimental and theoretical thermal fluid dynamics is one of the tasks of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf (FZD). Within the context of this work the new capacitance wire-mesh sensor was developed. This new sensor is a successor of the well known conductivity wire-mesh sensor, which was also developed at FZD and is currently being employed around the world. The conductivity wire mesh-sensor is based on the measurement of electrical conductivity in a flow cross-section and therefore only suited for the investigation of flow mixtures with an electrically conductive component, for example water-steam flows. The new capacitance wire-mesh sensor is now able to measure arbitrary substances, such as oil or other organic fluids. In this way, this sensor is applicable in a number of new fields, for example in process engineering and oil industry.

As the conductivity wire-mesh sensor the capacitance wire-mesh sensor consists of a set of wire electrodes stretched across a vessel or pipe in two slightly separated planes. Within one plane electrodes run in parallel whereas electrodes of different planes are perpendicular to each other. Thus, a grid of electrodes is formed in the cross-section (see figure). An associated electronics measures the electrical capacitance in all crossing points, which in turn is a measure of the dielectric constant of the substance surrounding each crossing point (the dielectric constant represents the extent to which a material concentrates the electrical field). The electronics is optimized to measure the tiny electrical capacitances of the crossing points which are in the range of only few Femtofarad (10-15 F).This can be done at very high time resolution of up to 10000 frames per second. Since different substances have different dielectric constant values, the sensor can discriminate phases or components. As an example the figure below shows a slug flow of air with a dielectric constant of 1 and silicone oil with a value of 2.7 in a pipe. Although the dielectric constants values of the two substances are rather close to each other, they are precisely distinguished by the capacitance wire-mesh sensor.

The capacitance wire-mesh sensor from the Forschungszentrum Dresden-Rossendorf may be employed in industrial applications where complex flow conditions are to be investigated. It does not require optical access to the flow as other measurement techniques do. The results of this work were recently published in the journal “Measurement Science and Technology”.

Christine Bohnet | alfa
Further information:
http://www.fzd.de
http://www.fz-rossendorf.de

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>