Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does renewable energy make sense?

14.08.2007
Do the overall efficiencies of renewable energy sources, such as wind, solar, and geothermal add up in terms of their complete life cycle from materials sourcing, manufacture, running, and decommissioning? Researchers in Greece have carried out a life cycle assessment to find the answer.

Increasing energy consumption and a growing world population implies shrinking reserves of fossil fuels. While the use of fossil fuels brings with it the problem of carbon dioxide emissions and climate change. Our continued dependence on fossil fuels coupled with the pressing global issue of climate change has pushed the concept of renewable energy sources to the top of the agenda.

In looking for alternative energy supplies, there is more to simply adding up the outputs, according to Christopher Koroneos and Yanni Koroneos of the Laboratory of Heat Transfer and Environmental Engineering, at the Aristotle University of Thessaloniki, Greece. They argue that a whole life cycle assessment of any environmentally friendly energy supply must be carried out to ensure its green credentials are valid.

Writing in Inderscience's International Journal of Global Energy Issues, the researchers point out that land use and materials employed are just two aspects of renewable energy development that can have an adverse impact on the otherwise positive environmental picture.

There are three viable renewable energy resources, say the researchers - solar energy, wind power and geothermal energy. They have applied the techniques of life cycle assessment (LCA) to each in order to determine the total environmental impact and to compare this with the effects of equivalent energy release from fossil fuels.

The LCA approach allows an assessment to be made of the flow of material and energy used in the construction, operation and ultimate decommissioning of a renewable energy supply. It also takes into account the manufacturing of components, the possible extraction and supply of fuels as well as waste generated in these processes.

The researchers demonstrate that some renewable energy systems based on wind power and geothermal energy do have valid green credentials in electricity production. The efficiency of these systems is comparable over the complete life cycle than the equivalent fossil fuel system. However, the conversion of solar energy to electricity using photovoltaic solar cells is less efficient in terms of materials production, running, and recycling than non-renewable energy. However, economies of scale come into play with solar power and a large enough area of solar cells would outstrip the fossil fuel system. The team also points out that the life cycle pollution of solar systems is much, much lower than any conventional system although thermodynamic efficiency is lower.

"A significant advantage of the use of renewable energy systems," say the researchers, "is that they are environmentally friendly because overall they result in lower dangerous pollutant emissions, this and one other major factor, they are essentially inexhaustible."

Jim Corlett | alfa
Further information:
http://www.inderscience.com

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>