Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Powered by sound — revolutionary stove could help reduce poverty

It’s a cooker, a fridge and a generator in one — and it could have a huge impact on the lives of people in the world’s poorest communities.

The £2m SCORE (Stove for Cooking, Refrigeration and Electricity) project brings together experts from across the world to develop a wood-powered generator capable of both cooking and cooling food. By developing an affordable, versatile domestic appliance SCORE aims to address the energy needs of rural communities in Africa and Asia, where access to power is extremely limited.

Across the world, two billion people use open fires as their primary cooking method. These fires have been found to be highly inefficient, with 93 per cent of the energy generated lost. And when used in enclosed spaces, smoke from the fires can cause health problems.

The project team will use thermoacoustic technology for the first time to convert biomass fuels into energy, powering the stove, fridge and generator.

Thermoacoustics refers to the generation of sound waves through the non-uniform heating of gas — illustrated by the ‘singing’ of hot glass vessels which can be heard during the glass blowing process. This phenomena has been known for centuries, but could offer new possibilities in the energy conversion process.

The concept of the proposed device is based on proven thermoacoustic engines and refrigerators developed for applications such as combustion-fired natural gas liquefaction and radioisotope-fuelled electric power generation. Los Alamos Laboratories, in collaboration with several industrial partners, has played a lead role in the development of thermoacoustic technology.

Using thermoacoustic technology is a more efficient way of using wood as a fuel than using an open fire to cook. It produces less pollutants. The device will also have few moving parts making in more reliable.

The University of Nottingham, University of Manchester, Imperial College London and Queen Mary, University of London are partners in the project — from researching engine design to the manufacture and distribution of the stove in the developing world. Led by The University of Nottingham, the project will work with governments, universities and civil organisation across Africa and Asia, many of whom have already offered support. This collaboration will ensure the device is affordable, socially acceptable and that there is scope for communities to develop businesses to manufacture and repair locally.

This moving part, the linear alternator, is being developed in conjunction with GP Acoustics, a company that produces loudspeaker equipment.

Mark Dodd, Research Manager at GP Acoustics, said: “We at GP Acoustics and our manufacturing partner Dai-ichi in the Philippines are delighted that technology originally created for the leisure market is being used to help improve the lives of people in developing countries.”

Researchers from Los Alamos Laboratories are also supporting the project, along with Practical Action, a charity which promotes the development of sustainable technology to tackle poverty in developing countries. The SCORE consortium is funded by grants from the Engineering and Physical Sciences Research Council as part of its initiative on energy and international development.

Professor Maksud Helali, Head of the Department of Mechanical Engineering at the Bangladesh University of Engineering and Technology has offered his support. “Bangladesh’s energy infrastructure is relatively small and inefficient, even to low income standards, and its access to energy is difficult,” he said.

“An efficient, expanding energy system is essential for accelerated economic growth and poverty alleviation. Industry and commerce depend on readily available, reliable, reasonably-priced energy to operate and expand. It will improve the quality of people’s lives.”

SCORE Project Director Paul Riley added: “Designed specifically for use by the rural poor in the developing world, SCORE is a unique design that generates electricity and can cool as well as cook. Manufactured on site it will give many business opportunities that should increase uptake by tenfold compared with current stove designs thus significantly improving health, education and wealth.”

More information is available from or email

Emma Thorne | alfa
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>