Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar Electricity on a Large Scale Linear Fresnel Collectors for Solar Thermal Power Stations in a Practice Test

16.04.2007
Using the technology available today, half of the global energy demand in 2050 can be met by renewable energy sources. This has been proven by current scenarios in which a major role has also been ascribed to solar electricity generation.

In addition to photovoltaics, solar thermal power stations are central to solar electricity generation. Over the past years, Fraunhofer ISE has performed research to optimize the components of such power stations and has carried out theoretical investigations on new concepts. In cooperation with industry and research partners, a new demonstration plant is being constructed under the direction of MAN Ferrostall Power Industry GmbH, whose goal it is to commercialize linear Fresnel collectors for use in solar thermal power stations.

Fraunhofer ISE presents concepts and components at the Stand of the Fraunhofer Alliance Energy at the Hanover Trade Fair this year from 16-20 April.

In conventional solar thermal power stations (parabolic trough system), sunlight is focused on a solar-selective absorber pipe by means of mirrors. The thermal oil flowing in the pipe is heated by the intense solar heat, and the resulting steam produced in the heat exchanger is converted to electricity by means of a turbine and generator. Both the classical parabolic trough system as well as the new concept of Fresnel systems with secondary mirrors are classified under linear concentrating systems. Particular to the Fresnel system are flat mirrors which are controlled as strings and track the sun. The solar radiation is focused on a central absorber pipe with a highly selective coating and which is situated above the reflector field. The components required for this system are, for the most part, inexpensive standard items. They are available world-wide, allowing a high local share of added value, which gives this technology an advantage over competitive technologies. In addition, Fresnel technology is not sensitive to wind loads and allows parallel land use to a large extent.

Fraunhofer ISE has contributed greatly in making the key components such as the absorber pipe, the secondary reflectors, primary reflector array and their control ready for operation. Based on theoretical investigations and the specific conditions found in sunny climates, Fraunhofer researchers have calculated that the electricity production costs will not rise above 0.12 €/kWh.

The next step is the technical verification under real operating conditions. For this purpose, a 100m long collector string is being constructed as a test and demonstration project at the Plataforma Solar de Almería in southern Spain. Both Fraunhofer ISE and the German Aerospace Center (DLR) are measuring the optical and thermal characteristics of the system. The industry partner MAN Ferrostaal Power Industry GmbH and Solar Power Group GmbH are in charge of the commercialization of this technology.

As well as the market introduction of Fresnel collector systems, the partners in Almeria have also made it their goal to develop new power plant concepts for the small and medium power range. In particular, these concepts aim to have a low investment risk and also to make use of combined heat, cooling and power plants. As a result, new markets open up for manufacturers of concentrating collectors and heat engines, especially in southern Europe, North Africa and the Middle East.

The construction of the power stations in Almeria is sponsored by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. In the expert report "Welt im Wandel" put out by the Scientific Committee of the Federal German Government for Global Climate Change, the potential of renewable energies and their contribution to the future energy supply are reported. www.wbgu.de

Hanover Trade Fair, 16-20 April 2007
Stand of the Fraunhofer Alliance "Energy"
Hall 13, Stand E 27
Text of the PI and Photos can be downloaded from our web page: www.ise.fraunhofer.de
Contact Persons for Further Information
Project Leader
Dr. Werner Platzer, Fraunhofer ISE
Phone: +49 (0) 7 61/45 88-51 31
Fax: +49 (0) 7 61/45 88-91 31
E-Mail: Werner.Platzer@ise.fraunhofer.de

Karin Schneider | idw
Further information:
http://www.wbgu.de
http://www.ise.fhg.de/

More articles from Power and Electrical Engineering:

nachricht On the crest of the wave: Electronics on a time scale shorter than a cycle of light
30.07.2015 | Universität Regensburg

nachricht Ultra-Thin Hollow Nanocages Could Reduce Platinum Use in Fuel Cell Electrodes
27.07.2015 | Georgia Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Surprising similarity in fly and mouse motion vision

30.07.2015 | Life Sciences

Efficient Infrared Heat Saves Time and Energy in the Manufacture of Motor Vehicle Carpets

30.07.2015 | Trade Fair News

Roentgen prize goes to Dr Eleftherios Goulielmakis

30.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>