Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar Electricity on a Large Scale Linear Fresnel Collectors for Solar Thermal Power Stations in a Practice Test

16.04.2007
Using the technology available today, half of the global energy demand in 2050 can be met by renewable energy sources. This has been proven by current scenarios in which a major role has also been ascribed to solar electricity generation.

In addition to photovoltaics, solar thermal power stations are central to solar electricity generation. Over the past years, Fraunhofer ISE has performed research to optimize the components of such power stations and has carried out theoretical investigations on new concepts. In cooperation with industry and research partners, a new demonstration plant is being constructed under the direction of MAN Ferrostall Power Industry GmbH, whose goal it is to commercialize linear Fresnel collectors for use in solar thermal power stations.

Fraunhofer ISE presents concepts and components at the Stand of the Fraunhofer Alliance Energy at the Hanover Trade Fair this year from 16-20 April.

In conventional solar thermal power stations (parabolic trough system), sunlight is focused on a solar-selective absorber pipe by means of mirrors. The thermal oil flowing in the pipe is heated by the intense solar heat, and the resulting steam produced in the heat exchanger is converted to electricity by means of a turbine and generator. Both the classical parabolic trough system as well as the new concept of Fresnel systems with secondary mirrors are classified under linear concentrating systems. Particular to the Fresnel system are flat mirrors which are controlled as strings and track the sun. The solar radiation is focused on a central absorber pipe with a highly selective coating and which is situated above the reflector field. The components required for this system are, for the most part, inexpensive standard items. They are available world-wide, allowing a high local share of added value, which gives this technology an advantage over competitive technologies. In addition, Fresnel technology is not sensitive to wind loads and allows parallel land use to a large extent.

Fraunhofer ISE has contributed greatly in making the key components such as the absorber pipe, the secondary reflectors, primary reflector array and their control ready for operation. Based on theoretical investigations and the specific conditions found in sunny climates, Fraunhofer researchers have calculated that the electricity production costs will not rise above 0.12 €/kWh.

The next step is the technical verification under real operating conditions. For this purpose, a 100m long collector string is being constructed as a test and demonstration project at the Plataforma Solar de Almería in southern Spain. Both Fraunhofer ISE and the German Aerospace Center (DLR) are measuring the optical and thermal characteristics of the system. The industry partner MAN Ferrostaal Power Industry GmbH and Solar Power Group GmbH are in charge of the commercialization of this technology.

As well as the market introduction of Fresnel collector systems, the partners in Almeria have also made it their goal to develop new power plant concepts for the small and medium power range. In particular, these concepts aim to have a low investment risk and also to make use of combined heat, cooling and power plants. As a result, new markets open up for manufacturers of concentrating collectors and heat engines, especially in southern Europe, North Africa and the Middle East.

The construction of the power stations in Almeria is sponsored by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. In the expert report "Welt im Wandel" put out by the Scientific Committee of the Federal German Government for Global Climate Change, the potential of renewable energies and their contribution to the future energy supply are reported. www.wbgu.de

Hanover Trade Fair, 16-20 April 2007
Stand of the Fraunhofer Alliance "Energy"
Hall 13, Stand E 27
Text of the PI and Photos can be downloaded from our web page: www.ise.fraunhofer.de
Contact Persons for Further Information
Project Leader
Dr. Werner Platzer, Fraunhofer ISE
Phone: +49 (0) 7 61/45 88-51 31
Fax: +49 (0) 7 61/45 88-91 31
E-Mail: Werner.Platzer@ise.fraunhofer.de

Karin Schneider | idw
Further information:
http://www.wbgu.de
http://www.ise.fhg.de/

More articles from Power and Electrical Engineering:

nachricht Transforming waste heat directly into electricity
03.05.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Did you know that Heraeus PID lamps have been used in the measurement of air quality at the London airport?
02.05.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>