Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Twente starts severe testing of cables for ITER reactor

09.03.2007
The Low Temperature Division of the University of Twente had signed a prestigious research contract: scientists of the group will start tests on the superconducting wires and cables for the thermonuclear ITER-project to be built in France. Cables with minimal losses and degradation are an important successfactor of nuclear fusion. A unique test site, in which the cables are subject to strong mechanical forces and extremely low temperatures, will prove their quality.

Superconducting magnets will be about one third of the building costs of the International Thermonuclear Reactor, to be built in Cadarache in France; this experimental reactor aims at delivering 500 Megawatt by nuclear fusion. November 2006, the participating countries have signed the contracts for building this reactor. Parallel to this, the G8 countries have placed nuclear fusion high on their agendas as a sustainable way of generating energy.

The magnets are crucial in keeping in control the plasma, in which fusion takes place. They exist of giant coils of superconducting cables. Losses in the cables during control of the magnets results in loss of magnetic fields as well. Well-functioning of the reactor is therefore highly dependent of cables with minimal losses and degradation in time. From all participating countries, reference cables are sent to the University of Twente for testing. One single test takes about two weeks, and the scientists estimate to receive 20 samples for testing.

Cold pressure

The currents through these cables and the magnetic fields are extremely high: over ten thousand Amperes and 13 Tesla, respectively. This results in very strong mechanical forces on the cables. The separate wires of which the cable consists, are already protected by a heavy steel mantle, but still they are pressed together by the strong forces. In the lab, these forces are simulated. The cable therefore is cooled down to 4.2 Kelvin (minus 269 degrees Celsius), which is the normal operating temperature. A strong mechanical press simulates the forces present under normal operation. Would temperatures rise too much caused by this pressure, the wires loose their superconductivity and the magnetic field disappears, resulting in a vanishing plasma.

The European Domestic Agency, responsible for the European contribution to ITER, chose the Low Temperature Division because of the extensive knowledge of and experience with the behaviour of superconducting cables. The group is highly reputed in the worldwide research area. Thanks to this experience, the scientists already proposed essential design improvements for the cables, resulting in less degradation and a reliable and economical way of operating the cables during the entire life of the reactor. The first cables using the ‘Twente model’ have already been made.

Sustainable energy

Nuclear fusion is seen as one of the answers to the worldwide energy issues: it is clean, safe and sustainable and does only produce short-living radioactive waste. The energy is generated from melting together light and heavy atomic nuclei, within a plasma at extremely high temperature. Nuclear fusion is the energy source of the sun and the stars. Compared to fossil fuels, this source of energy is inexhaustible.

The test site is developed by scientists of the Low Temperature Division led by prof. Horst Rogalla. The High Current Superconductivity section of this group takes care of the ITER-tests and is part of the Institute for Mechanics, Processes and Control Twente (IMPACT). The tests are coordinated by Mr. Arend Nijhuis.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl/nieuws/pers/en/cont_07-008_en.doc/

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>