Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Twente starts severe testing of cables for ITER reactor

09.03.2007
The Low Temperature Division of the University of Twente had signed a prestigious research contract: scientists of the group will start tests on the superconducting wires and cables for the thermonuclear ITER-project to be built in France. Cables with minimal losses and degradation are an important successfactor of nuclear fusion. A unique test site, in which the cables are subject to strong mechanical forces and extremely low temperatures, will prove their quality.

Superconducting magnets will be about one third of the building costs of the International Thermonuclear Reactor, to be built in Cadarache in France; this experimental reactor aims at delivering 500 Megawatt by nuclear fusion. November 2006, the participating countries have signed the contracts for building this reactor. Parallel to this, the G8 countries have placed nuclear fusion high on their agendas as a sustainable way of generating energy.

The magnets are crucial in keeping in control the plasma, in which fusion takes place. They exist of giant coils of superconducting cables. Losses in the cables during control of the magnets results in loss of magnetic fields as well. Well-functioning of the reactor is therefore highly dependent of cables with minimal losses and degradation in time. From all participating countries, reference cables are sent to the University of Twente for testing. One single test takes about two weeks, and the scientists estimate to receive 20 samples for testing.

Cold pressure

The currents through these cables and the magnetic fields are extremely high: over ten thousand Amperes and 13 Tesla, respectively. This results in very strong mechanical forces on the cables. The separate wires of which the cable consists, are already protected by a heavy steel mantle, but still they are pressed together by the strong forces. In the lab, these forces are simulated. The cable therefore is cooled down to 4.2 Kelvin (minus 269 degrees Celsius), which is the normal operating temperature. A strong mechanical press simulates the forces present under normal operation. Would temperatures rise too much caused by this pressure, the wires loose their superconductivity and the magnetic field disappears, resulting in a vanishing plasma.

The European Domestic Agency, responsible for the European contribution to ITER, chose the Low Temperature Division because of the extensive knowledge of and experience with the behaviour of superconducting cables. The group is highly reputed in the worldwide research area. Thanks to this experience, the scientists already proposed essential design improvements for the cables, resulting in less degradation and a reliable and economical way of operating the cables during the entire life of the reactor. The first cables using the ‘Twente model’ have already been made.

Sustainable energy

Nuclear fusion is seen as one of the answers to the worldwide energy issues: it is clean, safe and sustainable and does only produce short-living radioactive waste. The energy is generated from melting together light and heavy atomic nuclei, within a plasma at extremely high temperature. Nuclear fusion is the energy source of the sun and the stars. Compared to fossil fuels, this source of energy is inexhaustible.

The test site is developed by scientists of the Low Temperature Division led by prof. Horst Rogalla. The High Current Superconductivity section of this group takes care of the ITER-tests and is part of the Institute for Mechanics, Processes and Control Twente (IMPACT). The tests are coordinated by Mr. Arend Nijhuis.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl/nieuws/pers/en/cont_07-008_en.doc/

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>