Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


University of Twente starts severe testing of cables for ITER reactor

The Low Temperature Division of the University of Twente had signed a prestigious research contract: scientists of the group will start tests on the superconducting wires and cables for the thermonuclear ITER-project to be built in France. Cables with minimal losses and degradation are an important successfactor of nuclear fusion. A unique test site, in which the cables are subject to strong mechanical forces and extremely low temperatures, will prove their quality.

Superconducting magnets will be about one third of the building costs of the International Thermonuclear Reactor, to be built in Cadarache in France; this experimental reactor aims at delivering 500 Megawatt by nuclear fusion. November 2006, the participating countries have signed the contracts for building this reactor. Parallel to this, the G8 countries have placed nuclear fusion high on their agendas as a sustainable way of generating energy.

The magnets are crucial in keeping in control the plasma, in which fusion takes place. They exist of giant coils of superconducting cables. Losses in the cables during control of the magnets results in loss of magnetic fields as well. Well-functioning of the reactor is therefore highly dependent of cables with minimal losses and degradation in time. From all participating countries, reference cables are sent to the University of Twente for testing. One single test takes about two weeks, and the scientists estimate to receive 20 samples for testing.

Cold pressure

The currents through these cables and the magnetic fields are extremely high: over ten thousand Amperes and 13 Tesla, respectively. This results in very strong mechanical forces on the cables. The separate wires of which the cable consists, are already protected by a heavy steel mantle, but still they are pressed together by the strong forces. In the lab, these forces are simulated. The cable therefore is cooled down to 4.2 Kelvin (minus 269 degrees Celsius), which is the normal operating temperature. A strong mechanical press simulates the forces present under normal operation. Would temperatures rise too much caused by this pressure, the wires loose their superconductivity and the magnetic field disappears, resulting in a vanishing plasma.

The European Domestic Agency, responsible for the European contribution to ITER, chose the Low Temperature Division because of the extensive knowledge of and experience with the behaviour of superconducting cables. The group is highly reputed in the worldwide research area. Thanks to this experience, the scientists already proposed essential design improvements for the cables, resulting in less degradation and a reliable and economical way of operating the cables during the entire life of the reactor. The first cables using the ‘Twente model’ have already been made.

Sustainable energy

Nuclear fusion is seen as one of the answers to the worldwide energy issues: it is clean, safe and sustainable and does only produce short-living radioactive waste. The energy is generated from melting together light and heavy atomic nuclei, within a plasma at extremely high temperature. Nuclear fusion is the energy source of the sun and the stars. Compared to fossil fuels, this source of energy is inexhaustible.

The test site is developed by scientists of the Low Temperature Division led by prof. Horst Rogalla. The High Current Superconductivity section of this group takes care of the ITER-tests and is part of the Institute for Mechanics, Processes and Control Twente (IMPACT). The tests are coordinated by Mr. Arend Nijhuis.

Wiebe van der Veen | alfa
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>