Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligent oil-wells

27.10.2006
Earlier this autumn, the Norwegian oil company, Statoil , started producing from a well with “chemical intelligence”, in which new equipment monitors unwanted inflows of water to the well.

The equipment is supplied by a small SINTEF start-up company in Trondheim called ResMan as, whose work is based on many years of research at SINTEF and the Institute of Energy Technology (IFE).

It has taken about a year to develop the prototype for Statoil that has just been installed on the Urd field in the Norwegian Sea. Scientists believe that it will offer operating companies completely new possibilities for well control.

Water problems

“When oil is produced, all the fluids in the reservoir, including the water, start to move. Water in movement can have a planned positive function, because it can force the oil to move in the direction of the wells, thus increasing production. But there is still a great deal of uncertainty regarding just how water moves through a reservoir, and it often flows into production wells where it mixes with the other fluids. The result may be a reduction in saleable production, and in the worst case, serious well problems and operational shutdown,” says Fridtjof Nyhavn, managing director of ResMan as.

Unwanted inflows of water are the single most important factor causing production problems. A company such as Statoil alone produces enough water to fill a 350,000 tonne tanker a day. Much of this water could be replaced by saleable oil if measures to prevent water from flowing into the wells were implemented. Information about just where water flows into wells is a fundamental requirement for planning such measures. At current oil prices, even a one percent increase in Norwegian oil production would be worth NOK 4 billion a year.

“We decided to test this technology on Urd as we regard it as an extremely useful tool for the future,” says Statoil’s Sigurd Hundsnes.

The system

The ResMan system consists of a number of plastic staves, which are installed in the well in the production zone. The staves are doped with tracers that are unique to each section of the well, and these tracers are liberated if the plastic staves are surrounded by water. As long as there is only water in the well the tracers will not be liberated. It is this liberation of tracers - controlled by condition and environmental conditions – that is described as “chemical intelligence”. Measurements using chemical intelligence can be made without having to send any sort of cabling down the well.

Once it has been fully developed, the ResMan system will provide information about what is flowing, where, and in what quantities, at the interface between reservoir and well, but also internally in complex well completions.

“The pilot tests on Statoil’s field are extremely important for us,” says ResMan’s director of development Anne Dalager Dyrli. “We have demonstrated the system in the laboratory under conditions similar to well conditions, and we have produced sufficient plastic staves at full scale to meet the needs of a complete well. All of these steps, up to installation in a well, have taken place without any problems worth mentioning. The fact that production is now under way according to plan on the field shows that the ResMan system in the well situation has no negative effects on production and that the downhole parts of the system are functioning properly. The measurements (topside aspect) will be demonstrated in the event of a subsequent water breakthrough.

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>