Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligent oil-wells

27.10.2006
Earlier this autumn, the Norwegian oil company, Statoil , started producing from a well with “chemical intelligence”, in which new equipment monitors unwanted inflows of water to the well.

The equipment is supplied by a small SINTEF start-up company in Trondheim called ResMan as, whose work is based on many years of research at SINTEF and the Institute of Energy Technology (IFE).

It has taken about a year to develop the prototype for Statoil that has just been installed on the Urd field in the Norwegian Sea. Scientists believe that it will offer operating companies completely new possibilities for well control.

Water problems

“When oil is produced, all the fluids in the reservoir, including the water, start to move. Water in movement can have a planned positive function, because it can force the oil to move in the direction of the wells, thus increasing production. But there is still a great deal of uncertainty regarding just how water moves through a reservoir, and it often flows into production wells where it mixes with the other fluids. The result may be a reduction in saleable production, and in the worst case, serious well problems and operational shutdown,” says Fridtjof Nyhavn, managing director of ResMan as.

Unwanted inflows of water are the single most important factor causing production problems. A company such as Statoil alone produces enough water to fill a 350,000 tonne tanker a day. Much of this water could be replaced by saleable oil if measures to prevent water from flowing into the wells were implemented. Information about just where water flows into wells is a fundamental requirement for planning such measures. At current oil prices, even a one percent increase in Norwegian oil production would be worth NOK 4 billion a year.

“We decided to test this technology on Urd as we regard it as an extremely useful tool for the future,” says Statoil’s Sigurd Hundsnes.

The system

The ResMan system consists of a number of plastic staves, which are installed in the well in the production zone. The staves are doped with tracers that are unique to each section of the well, and these tracers are liberated if the plastic staves are surrounded by water. As long as there is only water in the well the tracers will not be liberated. It is this liberation of tracers - controlled by condition and environmental conditions – that is described as “chemical intelligence”. Measurements using chemical intelligence can be made without having to send any sort of cabling down the well.

Once it has been fully developed, the ResMan system will provide information about what is flowing, where, and in what quantities, at the interface between reservoir and well, but also internally in complex well completions.

“The pilot tests on Statoil’s field are extremely important for us,” says ResMan’s director of development Anne Dalager Dyrli. “We have demonstrated the system in the laboratory under conditions similar to well conditions, and we have produced sufficient plastic staves at full scale to meet the needs of a complete well. All of these steps, up to installation in a well, have taken place without any problems worth mentioning. The fact that production is now under way according to plan on the field shows that the ResMan system in the well situation has no negative effects on production and that the downhole parts of the system are functioning properly. The measurements (topside aspect) will be demonstrated in the event of a subsequent water breakthrough.

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>