Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Intelligent oil-wells

Earlier this autumn, the Norwegian oil company, Statoil , started producing from a well with “chemical intelligence”, in which new equipment monitors unwanted inflows of water to the well.

The equipment is supplied by a small SINTEF start-up company in Trondheim called ResMan as, whose work is based on many years of research at SINTEF and the Institute of Energy Technology (IFE).

It has taken about a year to develop the prototype for Statoil that has just been installed on the Urd field in the Norwegian Sea. Scientists believe that it will offer operating companies completely new possibilities for well control.

Water problems

“When oil is produced, all the fluids in the reservoir, including the water, start to move. Water in movement can have a planned positive function, because it can force the oil to move in the direction of the wells, thus increasing production. But there is still a great deal of uncertainty regarding just how water moves through a reservoir, and it often flows into production wells where it mixes with the other fluids. The result may be a reduction in saleable production, and in the worst case, serious well problems and operational shutdown,” says Fridtjof Nyhavn, managing director of ResMan as.

Unwanted inflows of water are the single most important factor causing production problems. A company such as Statoil alone produces enough water to fill a 350,000 tonne tanker a day. Much of this water could be replaced by saleable oil if measures to prevent water from flowing into the wells were implemented. Information about just where water flows into wells is a fundamental requirement for planning such measures. At current oil prices, even a one percent increase in Norwegian oil production would be worth NOK 4 billion a year.

“We decided to test this technology on Urd as we regard it as an extremely useful tool for the future,” says Statoil’s Sigurd Hundsnes.

The system

The ResMan system consists of a number of plastic staves, which are installed in the well in the production zone. The staves are doped with tracers that are unique to each section of the well, and these tracers are liberated if the plastic staves are surrounded by water. As long as there is only water in the well the tracers will not be liberated. It is this liberation of tracers - controlled by condition and environmental conditions – that is described as “chemical intelligence”. Measurements using chemical intelligence can be made without having to send any sort of cabling down the well.

Once it has been fully developed, the ResMan system will provide information about what is flowing, where, and in what quantities, at the interface between reservoir and well, but also internally in complex well completions.

“The pilot tests on Statoil’s field are extremely important for us,” says ResMan’s director of development Anne Dalager Dyrli. “We have demonstrated the system in the laboratory under conditions similar to well conditions, and we have produced sufficient plastic staves at full scale to meet the needs of a complete well. All of these steps, up to installation in a well, have taken place without any problems worth mentioning. The fact that production is now under way according to plan on the field shows that the ResMan system in the well situation has no negative effects on production and that the downhole parts of the system are functioning properly. The measurements (topside aspect) will be demonstrated in the event of a subsequent water breakthrough.

Aase Dragland | alfa
Further information:

More articles from Power and Electrical Engineering:

nachricht Prototype device for measuring graphene-based electromagnetic radiation created
28.10.2016 | Lomonosov Moscow State University

nachricht Steering a fusion plasma toward stability
28.10.2016 | American Physical Society

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>