Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snake robot to the rescue

18.07.2006
It is intelligent and moves with the aid of hydraulic pressure and co-ordinated joint movements. A snake robot can perform life-saving operations during a fire, an explosion and in other hostile environments.

Try to picture a snake-like robot that can move into places that are too dangerous for humans to enter. The snake can climb up stairs, force past beams and twist itself round corners. Imagine that it has a built-in advanced water tap that not only can be turned on and off, but can allow the direction of the water flow to be altered.

Valves and water hydraulic motors

This new robot system is now in the development stages at SINTEF. A patent application has been filed and the research scientists have built a demonstrator to prove that the particular research-related challenges have been conquered. The work has so far consumed 18 months and a thesis at SINTEF. A Ph. D study, which is underway at NTNU, is concerned with developing a control strategy for the robot.

The snake contains 20 water hydraulic motors that move the robotic joints – and a similar number of valves to control the water flow to each motor. Each module consists of two hydraulic motors and two valves. The outer layer is comprised of a strong steel skeleton containing the joint modules, which can rotate around two orthogonal axes. The joints are controlled by custom-built electronics.

“It is much like the grab on an excavator where different joints and movements are co-ordinated by the operator. In this instance, the operator is the computer,” says Pål Liljebäck of SINTEF. “There are angle sensors in each joint, and we can decide with conplete accuracy the angle that we want in the joints. A camera in the snake’s head makes operating the snake like driving a remote-controlled car. The operator can tell the snake to move from A to B, and the snake works out on its own how to accomplish this. It knows how to cross a pile of materials, climb down on the back side and twist itself round objects in order to get footing.”

The energy to move the joints comes from 100 bars of hydraulic water pressure. “This pressure is strong enough to lift a car up off the ground, something that again explains how the snake can in principle break through a wall. But both the hydraulic pressure and the use of pure water without additives in the hydraulic system have posed challenges”, Liljebäck says.

At the cutting edge of research

A snake does not rely on any single part of its body to move forward. Instead, it uses its entire body to create co-ordinated movements that move it in the desired direction. Project manager Øyvind Stavdahl says that the project, which is being conducted in co-operation with NTNU Professor Kristin Y. Pettersen, is at the cutting edge of research because of its attempts to recreate a snake’s movement.

The steel skeleton and motors are being custom-built at local workshops in Trondheim, partly because the research scientists needed to take a novel approach in the construction of the water hydraulic valves.

“The lack of space has been a major challenge,” says Liljebäck. “We needed power valves that were small, water tolerant and capable of controlling both the direction and the amount of the water flow. The closest thing we found on the market that met the criteria was valves used in Formula One racing cars, but these cost NOK 100,000 each and didn’t tolerate water. As a result, we decided to manufacture our own valves and, in co-operation with a local workshop, we built a prototype from scratch.”

Applications

The snake has a wide variety of applications: fighting fires where humans can not enter due to heat or the risk of building collapse; underwater operations in connection with maintenance of oil installations on the sea floor; rescue operations in earthquake areas and potentially explosive situations.

“Tunnel fires are explosive and it is extremely dangerous for firefighters to enter the tunnel to extinguish the fire,” says Stavdahl. “In such situations, it is possible to imagine a whole nest of snakes slithering out from a layer in the tunnel. Since the snake has modules, it is possible to design snakes for different functions: snakes can, for example, provide oxygen masks to people trapped in the tunnel, light up the tunnel or carry a camera that provides firefighters outside an overview of the situation without requiring them to enter.”

The research scientists are now talking with American businesses concerning possible sales. Further research is still required until a commercial model is available. But the concept is clear. The project has been financed by Norsk Hydro’s fund for SINTEF

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>