Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snake robot to the rescue

18.07.2006
It is intelligent and moves with the aid of hydraulic pressure and co-ordinated joint movements. A snake robot can perform life-saving operations during a fire, an explosion and in other hostile environments.

Try to picture a snake-like robot that can move into places that are too dangerous for humans to enter. The snake can climb up stairs, force past beams and twist itself round corners. Imagine that it has a built-in advanced water tap that not only can be turned on and off, but can allow the direction of the water flow to be altered.

Valves and water hydraulic motors

This new robot system is now in the development stages at SINTEF. A patent application has been filed and the research scientists have built a demonstrator to prove that the particular research-related challenges have been conquered. The work has so far consumed 18 months and a thesis at SINTEF. A Ph. D study, which is underway at NTNU, is concerned with developing a control strategy for the robot.

The snake contains 20 water hydraulic motors that move the robotic joints – and a similar number of valves to control the water flow to each motor. Each module consists of two hydraulic motors and two valves. The outer layer is comprised of a strong steel skeleton containing the joint modules, which can rotate around two orthogonal axes. The joints are controlled by custom-built electronics.

“It is much like the grab on an excavator where different joints and movements are co-ordinated by the operator. In this instance, the operator is the computer,” says Pål Liljebäck of SINTEF. “There are angle sensors in each joint, and we can decide with conplete accuracy the angle that we want in the joints. A camera in the snake’s head makes operating the snake like driving a remote-controlled car. The operator can tell the snake to move from A to B, and the snake works out on its own how to accomplish this. It knows how to cross a pile of materials, climb down on the back side and twist itself round objects in order to get footing.”

The energy to move the joints comes from 100 bars of hydraulic water pressure. “This pressure is strong enough to lift a car up off the ground, something that again explains how the snake can in principle break through a wall. But both the hydraulic pressure and the use of pure water without additives in the hydraulic system have posed challenges”, Liljebäck says.

At the cutting edge of research

A snake does not rely on any single part of its body to move forward. Instead, it uses its entire body to create co-ordinated movements that move it in the desired direction. Project manager Øyvind Stavdahl says that the project, which is being conducted in co-operation with NTNU Professor Kristin Y. Pettersen, is at the cutting edge of research because of its attempts to recreate a snake’s movement.

The steel skeleton and motors are being custom-built at local workshops in Trondheim, partly because the research scientists needed to take a novel approach in the construction of the water hydraulic valves.

“The lack of space has been a major challenge,” says Liljebäck. “We needed power valves that were small, water tolerant and capable of controlling both the direction and the amount of the water flow. The closest thing we found on the market that met the criteria was valves used in Formula One racing cars, but these cost NOK 100,000 each and didn’t tolerate water. As a result, we decided to manufacture our own valves and, in co-operation with a local workshop, we built a prototype from scratch.”

Applications

The snake has a wide variety of applications: fighting fires where humans can not enter due to heat or the risk of building collapse; underwater operations in connection with maintenance of oil installations on the sea floor; rescue operations in earthquake areas and potentially explosive situations.

“Tunnel fires are explosive and it is extremely dangerous for firefighters to enter the tunnel to extinguish the fire,” says Stavdahl. “In such situations, it is possible to imagine a whole nest of snakes slithering out from a layer in the tunnel. Since the snake has modules, it is possible to design snakes for different functions: snakes can, for example, provide oxygen masks to people trapped in the tunnel, light up the tunnel or carry a camera that provides firefighters outside an overview of the situation without requiring them to enter.”

The research scientists are now talking with American businesses concerning possible sales. Further research is still required until a commercial model is available. But the concept is clear. The project has been financed by Norsk Hydro’s fund for SINTEF

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>