Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snake robot to the rescue

18.07.2006
It is intelligent and moves with the aid of hydraulic pressure and co-ordinated joint movements. A snake robot can perform life-saving operations during a fire, an explosion and in other hostile environments.

Try to picture a snake-like robot that can move into places that are too dangerous for humans to enter. The snake can climb up stairs, force past beams and twist itself round corners. Imagine that it has a built-in advanced water tap that not only can be turned on and off, but can allow the direction of the water flow to be altered.

Valves and water hydraulic motors

This new robot system is now in the development stages at SINTEF. A patent application has been filed and the research scientists have built a demonstrator to prove that the particular research-related challenges have been conquered. The work has so far consumed 18 months and a thesis at SINTEF. A Ph. D study, which is underway at NTNU, is concerned with developing a control strategy for the robot.

The snake contains 20 water hydraulic motors that move the robotic joints – and a similar number of valves to control the water flow to each motor. Each module consists of two hydraulic motors and two valves. The outer layer is comprised of a strong steel skeleton containing the joint modules, which can rotate around two orthogonal axes. The joints are controlled by custom-built electronics.

“It is much like the grab on an excavator where different joints and movements are co-ordinated by the operator. In this instance, the operator is the computer,” says Pål Liljebäck of SINTEF. “There are angle sensors in each joint, and we can decide with conplete accuracy the angle that we want in the joints. A camera in the snake’s head makes operating the snake like driving a remote-controlled car. The operator can tell the snake to move from A to B, and the snake works out on its own how to accomplish this. It knows how to cross a pile of materials, climb down on the back side and twist itself round objects in order to get footing.”

The energy to move the joints comes from 100 bars of hydraulic water pressure. “This pressure is strong enough to lift a car up off the ground, something that again explains how the snake can in principle break through a wall. But both the hydraulic pressure and the use of pure water without additives in the hydraulic system have posed challenges”, Liljebäck says.

At the cutting edge of research

A snake does not rely on any single part of its body to move forward. Instead, it uses its entire body to create co-ordinated movements that move it in the desired direction. Project manager Øyvind Stavdahl says that the project, which is being conducted in co-operation with NTNU Professor Kristin Y. Pettersen, is at the cutting edge of research because of its attempts to recreate a snake’s movement.

The steel skeleton and motors are being custom-built at local workshops in Trondheim, partly because the research scientists needed to take a novel approach in the construction of the water hydraulic valves.

“The lack of space has been a major challenge,” says Liljebäck. “We needed power valves that were small, water tolerant and capable of controlling both the direction and the amount of the water flow. The closest thing we found on the market that met the criteria was valves used in Formula One racing cars, but these cost NOK 100,000 each and didn’t tolerate water. As a result, we decided to manufacture our own valves and, in co-operation with a local workshop, we built a prototype from scratch.”

Applications

The snake has a wide variety of applications: fighting fires where humans can not enter due to heat or the risk of building collapse; underwater operations in connection with maintenance of oil installations on the sea floor; rescue operations in earthquake areas and potentially explosive situations.

“Tunnel fires are explosive and it is extremely dangerous for firefighters to enter the tunnel to extinguish the fire,” says Stavdahl. “In such situations, it is possible to imagine a whole nest of snakes slithering out from a layer in the tunnel. Since the snake has modules, it is possible to design snakes for different functions: snakes can, for example, provide oxygen masks to people trapped in the tunnel, light up the tunnel or carry a camera that provides firefighters outside an overview of the situation without requiring them to enter.”

The research scientists are now talking with American businesses concerning possible sales. Further research is still required until a commercial model is available. But the concept is clear. The project has been financed by Norsk Hydro’s fund for SINTEF

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Power and Electrical Engineering:

nachricht Flexible OLED applications arrive
28.06.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Energy from Sunlight: Further Steps towards Artificial Photosynthesis
24.06.2016 | Universität Basel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

Plate tectonics without jerking

30.06.2016 | Earth Sciences

A protein coat helps chromosomes keep their distance

30.06.2016 | Life Sciences

Thousands on one chip: New Method to study Proteins

30.06.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>