Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers peg magnetism as key driver of high-temperature superconductivity

06.07.2006
When it comes to superconductivity, magnetic excitations may top good vibrations.

Writing in the July 6, 2006, issue of Nature, scientists working at the Commerce Department's National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) in collaboration with physicists from the University of Tennessee (UT) and Oak Ridge National Laboratory (ORNL) report strong evidence that magnetic fluctuations are key to a universal mechanism for pairing electrons and enabling resistance-free passage of electric current in high-temperature superconductors.

An important missing piece in the puzzle of high-temperature superconductivity, the finding should boost efforts to develop a variety of useful technologies now considered impractical for conventional superconductors, which work at markedly lower temperatures. Examples include loss-free systems for storing and distributing electric energy, superconducting digital routers for high-speed communications, and more efficient generators and motors.

The team was led by Pengcheng Dai, a UT-ORNL joint professor.

"Our results unify understanding of the role of magnetism in high-temperature superconductivity and move the research community one step closer to understanding the underlying pairing mechanism itself," says NIST physicist Jeffrey Lynn, a member of the collaboration. Better understanding of the mechanism of high-temperature superconductivity may lead to the discovery of new materials in which electrical resistance vanishes at even warmer temperatures.

Objects of intense scientific and technological interest since their discovery in 1986, high-temperature superconductors work their magic in ways different than materials that become superconducting at significantly colder temperatures, as first observed in 1911. In these conventional superconductors, vibrations in the materials' atomic latticework mediate the pairing process that results in the unimpeded flow of electrons.

Scientists have ruled out vibrations, or phonons, as the likely electron matchmaker in high-temperature superconducting compounds. And while they have assembled important clues over the last two decades, researchers have yet to pin down the electron-pairing mechanism in the high-temperature superconductors.

"Various experiments and theories have suggested that this resonance--this sharp magnetic excitation--may be the glue needed to explain high-temperature superconductivity, but key pieces of evidence were missing," explains lead author Stephen Wilson, a UT graduate student.

Previous work by other researchers had determined that magnetism played a role in one of two major classes of high-temperature superconductors--those engineered with holes, or occasional vacancies where electrons normally would reside. But, until this work, carried out at NCNR and ORNL's High Flux Isotope Reactor, the underlying pairing mechanism in the other class--materials doped with an excess of electrons--eluded detection.

Using neutron probes, which are extremely sensitive to magnetism, the team was the first to observe a magnetic resonance in an electron-doped high-temperature superconductor, in a carefully engineered compound known as PLCCO. More importantly, the resonance energy was found to obey a well-established relationship universal to high-temperature superconductors, irrespective of type.

This demonstrated a fundamental link between magnetism and the superconducting phase, the researchers report. These observations and findings should open new avenues of research into the exotic properties of high-temperature superconductors, they write.

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>