Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers peg magnetism as key driver of high-temperature superconductivity

06.07.2006
When it comes to superconductivity, magnetic excitations may top good vibrations.

Writing in the July 6, 2006, issue of Nature, scientists working at the Commerce Department's National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) in collaboration with physicists from the University of Tennessee (UT) and Oak Ridge National Laboratory (ORNL) report strong evidence that magnetic fluctuations are key to a universal mechanism for pairing electrons and enabling resistance-free passage of electric current in high-temperature superconductors.

An important missing piece in the puzzle of high-temperature superconductivity, the finding should boost efforts to develop a variety of useful technologies now considered impractical for conventional superconductors, which work at markedly lower temperatures. Examples include loss-free systems for storing and distributing electric energy, superconducting digital routers for high-speed communications, and more efficient generators and motors.

The team was led by Pengcheng Dai, a UT-ORNL joint professor.

"Our results unify understanding of the role of magnetism in high-temperature superconductivity and move the research community one step closer to understanding the underlying pairing mechanism itself," says NIST physicist Jeffrey Lynn, a member of the collaboration. Better understanding of the mechanism of high-temperature superconductivity may lead to the discovery of new materials in which electrical resistance vanishes at even warmer temperatures.

Objects of intense scientific and technological interest since their discovery in 1986, high-temperature superconductors work their magic in ways different than materials that become superconducting at significantly colder temperatures, as first observed in 1911. In these conventional superconductors, vibrations in the materials' atomic latticework mediate the pairing process that results in the unimpeded flow of electrons.

Scientists have ruled out vibrations, or phonons, as the likely electron matchmaker in high-temperature superconducting compounds. And while they have assembled important clues over the last two decades, researchers have yet to pin down the electron-pairing mechanism in the high-temperature superconductors.

"Various experiments and theories have suggested that this resonance--this sharp magnetic excitation--may be the glue needed to explain high-temperature superconductivity, but key pieces of evidence were missing," explains lead author Stephen Wilson, a UT graduate student.

Previous work by other researchers had determined that magnetism played a role in one of two major classes of high-temperature superconductors--those engineered with holes, or occasional vacancies where electrons normally would reside. But, until this work, carried out at NCNR and ORNL's High Flux Isotope Reactor, the underlying pairing mechanism in the other class--materials doped with an excess of electrons--eluded detection.

Using neutron probes, which are extremely sensitive to magnetism, the team was the first to observe a magnetic resonance in an electron-doped high-temperature superconductor, in a carefully engineered compound known as PLCCO. More importantly, the resonance energy was found to obey a well-established relationship universal to high-temperature superconductors, irrespective of type.

This demonstrated a fundamental link between magnetism and the superconducting phase, the researchers report. These observations and findings should open new avenues of research into the exotic properties of high-temperature superconductors, they write.

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>