Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers peg magnetism as key driver of high-temperature superconductivity

06.07.2006
When it comes to superconductivity, magnetic excitations may top good vibrations.

Writing in the July 6, 2006, issue of Nature, scientists working at the Commerce Department's National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) in collaboration with physicists from the University of Tennessee (UT) and Oak Ridge National Laboratory (ORNL) report strong evidence that magnetic fluctuations are key to a universal mechanism for pairing electrons and enabling resistance-free passage of electric current in high-temperature superconductors.

An important missing piece in the puzzle of high-temperature superconductivity, the finding should boost efforts to develop a variety of useful technologies now considered impractical for conventional superconductors, which work at markedly lower temperatures. Examples include loss-free systems for storing and distributing electric energy, superconducting digital routers for high-speed communications, and more efficient generators and motors.

The team was led by Pengcheng Dai, a UT-ORNL joint professor.

"Our results unify understanding of the role of magnetism in high-temperature superconductivity and move the research community one step closer to understanding the underlying pairing mechanism itself," says NIST physicist Jeffrey Lynn, a member of the collaboration. Better understanding of the mechanism of high-temperature superconductivity may lead to the discovery of new materials in which electrical resistance vanishes at even warmer temperatures.

Objects of intense scientific and technological interest since their discovery in 1986, high-temperature superconductors work their magic in ways different than materials that become superconducting at significantly colder temperatures, as first observed in 1911. In these conventional superconductors, vibrations in the materials' atomic latticework mediate the pairing process that results in the unimpeded flow of electrons.

Scientists have ruled out vibrations, or phonons, as the likely electron matchmaker in high-temperature superconducting compounds. And while they have assembled important clues over the last two decades, researchers have yet to pin down the electron-pairing mechanism in the high-temperature superconductors.

"Various experiments and theories have suggested that this resonance--this sharp magnetic excitation--may be the glue needed to explain high-temperature superconductivity, but key pieces of evidence were missing," explains lead author Stephen Wilson, a UT graduate student.

Previous work by other researchers had determined that magnetism played a role in one of two major classes of high-temperature superconductors--those engineered with holes, or occasional vacancies where electrons normally would reside. But, until this work, carried out at NCNR and ORNL's High Flux Isotope Reactor, the underlying pairing mechanism in the other class--materials doped with an excess of electrons--eluded detection.

Using neutron probes, which are extremely sensitive to magnetism, the team was the first to observe a magnetic resonance in an electron-doped high-temperature superconductor, in a carefully engineered compound known as PLCCO. More importantly, the resonance energy was found to obey a well-established relationship universal to high-temperature superconductors, irrespective of type.

This demonstrated a fundamental link between magnetism and the superconducting phase, the researchers report. These observations and findings should open new avenues of research into the exotic properties of high-temperature superconductors, they write.

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>