Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stealth radar system sees through trees, walls -- undetected

28.06.2006
Ohio State University engineers have invented a radar system that is virtually undetectable, because its signal resembles random noise.

The radar could have applications in law enforcement, the military, and disaster rescue.

Eric K. Walton, senior research scientist in Ohio State's ElectroScience Laboratory, said that with further development the technology could even be used for medical imaging.

He explained why using random noise makes the radar system invisible.

"Almost all radio receivers in the world are designed to eliminate random noise, so that they can clearly receive the signal they're looking for," Walton said. "Radio receivers could search for this radar signal and they wouldn't find it. It also won't interfere with TV, radio, or other communication signals."

The radar scatters a very low-intensity signal across a wide range of frequencies, so a TV or radio tuned to any one frequency would interpret the radar signal as a very weak form of static.

"It doesn't interfere because it has a bandwidth that is thousands of times broader than the signals it might otherwise interfere with," Walton said.

Like traditional radar, the "noise" radar detects objects by bouncing a radio signal off them and detecting the rebound. The hardware isn't expensive, either; altogether, the components cost less than $100.

The difference is that the noise radar generates a signal that resembles random noise, and a computer calculates very small differences in the return signal. The calculations happen billions of times every second, and the pattern of the signal changes constantly. A receiver couldn't detect the signal unless it knew exactly what random pattern to look for.

The radar can be tuned to penetrate solid walls -- just like the waves that transmit radio and TV signals -- so the military could spot enemy soldiers inside a building without the radar signal being detected, Walton said. Traffic police could measure vehicle speed without setting off drivers' radar detectors. Autonomous vehicles could tell whether a bush conceals a more dangerous obstacle, like a tree stump or a gulley.

The radar is inherently able to distinguish between many types of targets because of its ultra-wide-band characteristics. "Unfortunately, there are thousands of everyday objects that look like humans on radar -- even chairs and filing cabinets," he said. So the shape of a radar image alone can't be used to identify a human. "What tends to give a human away is that he moves. He breathes, his heart beats, his body makes unintended motions."

These tiny motions could be used to locate disaster survivors who were pinned under rubble. Other radar systems can't do that, because they are too far-sighted -- they can't see people who are buried only a few yards away. Walton said that the noise radar is inherently able to see objects that are nearby.

"It can see things that are only a couple of inches away with as much clarity as it can see things on the surface of Mars," he added.

That means that with further development, the radar might image tumors, blood clots, and foreign objects in the body. It could even measure bone density. As with all forms of medical imaging, studies would first have to determine the radar's effect on the body.

The university is expected to license the patented radar system.

Eric K. Walton | EurekAlert!
Further information:
http://www.osu.edu

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>