Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Repeatable low-breakdown voltage antifuses enabled through a Sandia-developed dielectric thin film


Researchers at Sandia National Laboratories have developed an inexpensive, reliable and easy-to-manufacture class of dielectric films that have the capability of enabling programmable antifuses on integrated circuits (IC) at less cost and using easier-to-manufacture methods.

The new Sandia films enable single-mask level sub 5 Volt write antifuses that are compatible with leading-edge IC specifications.

Antifuses are nonvolatile, one-time programmable memories fabricated on ICs that are programmed with applied voltage. People who need specially designed chips that are generally not available can use inexpensive chips made with the Sandia-developed dielectric film and permanently program them after fabrication. This technology inexpensively enables such activities as post fabrication trimming, ROM programming, on-chip serial number identification, and data and program security. Chips with antifuse devices may also be used in high radiation environments or for long-term storage where flash memory would not be reliable.

"Antifuses have been around a long time," says Paul Smith, who is involved in technology transfer at Sandia. "The new Sandia-developed film - that ultimately is incorporated into computer chips with antifuses - requires lower voltage and less real estate. This makes them more desirable than existing antifuses."

Smith hopes to attract outside companies to be Sandia partners who would commercialize the new film technology.

Sandia is a Department of Energy (DOE) National Nuclear Security Administration laboratory.

Current antifuse technologies rely on complex stacks of ultra-thin films that are foreign to standard Complimentary Metal Oxide Semiconductor (CMOS) processes. These existing multi-stack solutions use write voltages significantly greater than 5 Volts, making existing antifuses incompatible with many leading-edge IC designs. The depositions of these films can also be difficult to control during production, resulting in a potential for poor yield and reliability issues.

"In addition to compatibility with state-of-the-art ICs, Sandia’s novel antifuse technology offers great flexibility toward where the antifuse can be placed in an IC," says Scott Habermehl, one of the inventors of the dielectric film. "It can readily be integrated into either the front end or the back end wiring." He adds that the new dielectric technology enhances both process margin and device reliability since it allows manufacturers to use thicker films for the antifuse elements.

Sandia’s dielectric technology leverages existing fabrication equipment and infrastructure without the need for costly, specialized and dedicated tooling and facilities. The dielectric films were developed by Sandia researchers Scott Habermehl, Roger Apodaca and David Stein.

Chris Burroughs | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>