Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MIT powers up new battery for hybrid cars


Researchers at MIT have developed a new type of lithium battery that could become a cheaper alternative to the batteries that now power hybrid electric cars.

Until now, lithium batteries have not had the rapid charging capability or safety level needed for use in cars. Hybrid cars now run on nickel metal hydride batteries, which power an electric motor and can rapidly recharge while the car is decelerating or standing still.

But lithium nickel manganese oxide, described in a paper to be published in Science on Feb. 17, could revolutionize the hybrid car industry - a sector that has "enormous growth potential," says Gerbrand Ceder, MIT professor of materials science and engineering, who led the project.

"The writing is on the wall. It’s clearly happening," said Ceder, who said that a couple of companies are already interested in licensing the new lithium battery technology.

The new material is more stable (and thus safer) than lithium cobalt oxide batteries, which are used to power small electronic devices like cell phones, laptop computers, rechargeable personal digital assistants (PDAs) and such medical devices as pacemakers.

The small safety risk posed by lithium cobalt oxide is manageable in small devices but makes the material not viable for the larger batteries needed to run hybrid cars, Ceder said. Cobalt is also fairly expensive, he said.

The MIT team’s new lithium battery contains manganese and nickel, which are cheaper than cobalt.

Scientists already knew that lithium nickel manganese oxide could store a lot of energy, but the material took too long to charge to be commercially useful. The MIT researchers set out to modify the material’s structure to make it capable of charging and discharging more quickly.

Lithium nickel manganese oxide consists of layers of metal (nickel and manganese) separated from lithium layers by oxygen. The major problem with the compound was that the crystalline structure was too "disordered," meaning that the nickel and lithium were drawn to each other, interfering with the flow of lithium ions and slowing down the charging rate.

Lithium ions carry the battery’s charge, so to maximize the speed at which the battery can charge and discharge, the researchers designed and synthesized a material with a very ordered crystalline structure, allowing lithium ions to freely flow between the metal layers.

A battery made from the new material can charge or discharge in about 10 minutes - about 10 times faster than the unmodified lithium nickel manganese oxide. That brings it much closer to the timeframe needed for hybrid car batteries, Ceder said.

Before the material can be used commercially, the manufacturing process needs to be made less expensive, and a few other modifications will likely be necessary, Ceder said.

Other potential applications for the new lithium battery include power tools, electric bikes, and power backup for renewable energy sources.

The lead author on the research paper is Kisuk Kang, a graduate student in Ceder’s lab. Ying Shirley Meng, a postdoctoral associate in materials science and engineering at MIT, and Julien Breger and Clare P. Grey of the State University of New York at Stony Brook are also authors on the paper.

The research was funded by the National Science Foundation and the U.S. Department of Energy.

Elizabeth A. Thomson | MIT News Office
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>