Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT researchers fired up about battery alternative

08.02.2006


Just about everything that runs on batteries - flashlights, cell phones, electric cars, missile-guidance systems - would be improved with a better energy supply. But traditional batteries haven’t progressed far beyond the basic design developed by Alessandro Volta in the 19th century.



Until now.

Work at MIT’s Laboratory for Electromagnetic and Electronic Systems (LEES) holds out the promise of the first technologically significant and economically viable alternative to conventional batteries in more than 200 years.


Joel E. Schindall, the Bernard Gordon Professor of Electrical Engineering and Computer Science (EECS) and associate director of the Laboratory for Electromagnetic and Electronic Systems; John G. Kassakian, EECS professor and director of LEES; and Ph.D. candidate Riccardo Signorelli are using nanotube structures to improve on an energy storage device called an ultracapacitor.

Capacitors store energy as an electrical field, making them more efficient than standard batteries, which get their energy from chemical reactions. Ultracapacitors are capacitor-based storage cells that provide quick, massive bursts of instant energy. They are sometimes used in fuel-cell vehicles to provide an extra burst for accelerating into traffic and climbing hills.

However, ultracapacitors need to be much larger than batteries to hold the same charge.

The LEES invention would increase the storage capacity of existing commercial ultracapacitors by storing electrical fields at the atomic level.

Although ultracapacitors have been around since the 1960s, they are relatively expensive and only recently began being manufactured in sufficient quantities to become cost-competitive. Today you can find ultracapacitors in a range of electronic devices, from computers to cars.

However, despite their inherent advantages - a 10-year-plus lifetime, indifference to temperature change, high immunity to shock and vibration and high charging and discharging efficiency - physical constraints on electrode surface area and spacing have limited ultracapacitors to an energy storage capacity around 25 times less than a similarly sized lithium-ion battery.

The LEES ultracapacitor has the capacity to overcome this energy limitation by using vertically aligned, single-wall carbon nanotubes - one thirty-thousandth the diameter of a human hair and 100,000 times as long as they are wide. How does it work? Storage capacity in an ultracapacitor is proportional to the surface area of the electrodes. Today’s ultracapacitors use electrodes made of activated carbon, which is extremely porous and therefore has a very large surface area. However, the pores in the carbon are irregular in size and shape, which reduces efficiency. The vertically aligned nanotubes in the LEES ultracapacitor have a regular shape, and a size that is only several atomic diameters in width. The result is a significantly more effective surface area, which equates to significantly increased storage capacity.

The new nanotube-enhanced ultracapacitors could be made in any of the sizes currently available and be produced using conventional technology.

"This configuration has the potential to maintain and even improve the high performance characteristics of ultracapacitors while providing energy storage densities comparable to batteries," Schindall said. "Nanotube-enhanced ultracapacitors would combine the long life and high power characteristics of a commercial ultracapacitor with the higher energy storage density normally available only from a chemical battery."

This work was presented at the 15th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices in Deerfield Beach, Fla., in December 2005.

The work has been funded in part by the MIT/Industry Consortium on Advanced Automotive Electrical/Electronic Components and Systems and in part by a grant from the Ford-MIT Alliance.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>