Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL Unveils GridWiseTM Initiative to Test New Electric Grid Technologies

13.01.2006


’Smart’ Energy Devices and Real-time Pricing Information Enable Increased Options for Consumers, Bringing Power to the People



SEATTLE – Pacific Northwest National Laboratory announced today the launch of the Pacific Northwest GridWiseTM Demonstration projects, a regional initiative to test and speed adoption of new smart grid technologies that can make the power grid more resilient and efficient.

Senator Patty Murray, D-Wash., representatives from the Department of Energy, as well as demonstration project partners and participants kicked-off the program at an event in Seattle today. Through the GridWise Demonstration projects, PNNL researchers will gain insight into energy consumers’ behavior while testing new technologies designed to bring the electric transmission system into the information age.


About 300 volunteers on Washington’s Olympic Peninsula, in Yakima and in Gresham, Ore., will test equipment that is expected to make the grid more reliable, while offsetting huge investments in new transmission and distribution equipment.

A new combination of devices, software and advanced analytical tools will give homeowners more information about their energy use and cost, and researchers want to know if this will modify their behavior.

Approximately 200 homes will receive real-time price information through a broadband Internet connection and automated equipment that will adjust energy use based on price. In addition, some customers will have computer chips embedded in their dryers and water heaters that can sense when the power transmission system is under stress and automatically turn off certain functions briefly until the grid can be stabilized by power operators.

"The technologies we’re testing will turn today’s appliances, which are as dumb as stones with regard to the power grid, into full partners in grid operations." said Rob Pratt, GridWise program manager at PNNL in Richland, Wash.

The year-long study is part of the Pacific Northwest GridWise Demonstration, a project funded primarily by DOE. Northwest utilities, appliance manufacturers and technology companies also are supporting this effort to demonstrate the devices and assess the resulting consumer response.

In the pricing study, automated controls will adjust appliances and thermostats based on predetermined instructions from homeowners. The volunteers can choose to curtail or reduce energy use when prices are higher. At any point, homeowners have the ability to override even their preprogrammed preferences to achieve maximum comfort and convenience.

"We believe this project is the first to provide pricing data on a very short time scale – approximately every five minutes – and the first to include the true costs of transmission and distribution within that price," said Pratt.

Currently, most utilities charge a flat rate per kilowatt hour to homeowners, regardless of the wholesale cost of power or the cost of transmission and distribution. Pratt and other researchers will analyze how customers react to the real cost of delivering energy to their homes through the use of simulated electric bills and pretend money in a mock account that eventually will be converted into cash they get to keep.

If homeowners choose to reduce electric consumption at times of higher prices, the pretend money they save becomes real as they are issued a check from the GridWise program each quarter. Price conscious participants are expected to earn about $150 during the year and nobody will lose money during the experiment.

The communications, computer and control technologies provided by IBM, Invensys Controls and others can help customers become an integral part of power grid operations on a daily basis – and especially in times of extreme stress on the electrical distribution system.

In the portion of the demonstration focused on the smart appliance technology, a computer chip developed by PNNL is being installed in 150 Sears Kenmore dryers produced by Whirlpool Corporation.

The Grid FriendlyTM Appliance Controller chip could help prevent widespread power outages by turning off certain parts of an appliance when it senses instability in the grid – something that happens about once a day on average. Shutting down the heating element for a few minutes, while the drum continues to tumble, would likely go unnoticed by the homeowner but drastically reduces power demand within the home. Multiplied on a large scale, this instant reduction in energy load could serve as a shock absorber for the grid. It would give grid operators time to bring new power generation resources on-line to stabilize the grid – a process that usually takes several minutes.

At the end of the study, researchers will evaluate customers’ reactions to the chip and their responses to the real-time pricing information to determine their acceptance. This will help government and industry to determine whether and how to best make the technologies more widely available to consumers in the future.

An earlier PNNL study shows that creating a smarter grid through information technology could save $80 billion over 20 years nationally by offsetting costs of building new electric infrastructure – the generators, transmission lines and substations that will be required to meet estimated load growth.

Susan Bauer | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>