Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL Unveils GridWiseTM Initiative to Test New Electric Grid Technologies

13.01.2006


’Smart’ Energy Devices and Real-time Pricing Information Enable Increased Options for Consumers, Bringing Power to the People



SEATTLE – Pacific Northwest National Laboratory announced today the launch of the Pacific Northwest GridWiseTM Demonstration projects, a regional initiative to test and speed adoption of new smart grid technologies that can make the power grid more resilient and efficient.

Senator Patty Murray, D-Wash., representatives from the Department of Energy, as well as demonstration project partners and participants kicked-off the program at an event in Seattle today. Through the GridWise Demonstration projects, PNNL researchers will gain insight into energy consumers’ behavior while testing new technologies designed to bring the electric transmission system into the information age.


About 300 volunteers on Washington’s Olympic Peninsula, in Yakima and in Gresham, Ore., will test equipment that is expected to make the grid more reliable, while offsetting huge investments in new transmission and distribution equipment.

A new combination of devices, software and advanced analytical tools will give homeowners more information about their energy use and cost, and researchers want to know if this will modify their behavior.

Approximately 200 homes will receive real-time price information through a broadband Internet connection and automated equipment that will adjust energy use based on price. In addition, some customers will have computer chips embedded in their dryers and water heaters that can sense when the power transmission system is under stress and automatically turn off certain functions briefly until the grid can be stabilized by power operators.

"The technologies we’re testing will turn today’s appliances, which are as dumb as stones with regard to the power grid, into full partners in grid operations." said Rob Pratt, GridWise program manager at PNNL in Richland, Wash.

The year-long study is part of the Pacific Northwest GridWise Demonstration, a project funded primarily by DOE. Northwest utilities, appliance manufacturers and technology companies also are supporting this effort to demonstrate the devices and assess the resulting consumer response.

In the pricing study, automated controls will adjust appliances and thermostats based on predetermined instructions from homeowners. The volunteers can choose to curtail or reduce energy use when prices are higher. At any point, homeowners have the ability to override even their preprogrammed preferences to achieve maximum comfort and convenience.

"We believe this project is the first to provide pricing data on a very short time scale – approximately every five minutes – and the first to include the true costs of transmission and distribution within that price," said Pratt.

Currently, most utilities charge a flat rate per kilowatt hour to homeowners, regardless of the wholesale cost of power or the cost of transmission and distribution. Pratt and other researchers will analyze how customers react to the real cost of delivering energy to their homes through the use of simulated electric bills and pretend money in a mock account that eventually will be converted into cash they get to keep.

If homeowners choose to reduce electric consumption at times of higher prices, the pretend money they save becomes real as they are issued a check from the GridWise program each quarter. Price conscious participants are expected to earn about $150 during the year and nobody will lose money during the experiment.

The communications, computer and control technologies provided by IBM, Invensys Controls and others can help customers become an integral part of power grid operations on a daily basis – and especially in times of extreme stress on the electrical distribution system.

In the portion of the demonstration focused on the smart appliance technology, a computer chip developed by PNNL is being installed in 150 Sears Kenmore dryers produced by Whirlpool Corporation.

The Grid FriendlyTM Appliance Controller chip could help prevent widespread power outages by turning off certain parts of an appliance when it senses instability in the grid – something that happens about once a day on average. Shutting down the heating element for a few minutes, while the drum continues to tumble, would likely go unnoticed by the homeowner but drastically reduces power demand within the home. Multiplied on a large scale, this instant reduction in energy load could serve as a shock absorber for the grid. It would give grid operators time to bring new power generation resources on-line to stabilize the grid – a process that usually takes several minutes.

At the end of the study, researchers will evaluate customers’ reactions to the chip and their responses to the real-time pricing information to determine their acceptance. This will help government and industry to determine whether and how to best make the technologies more widely available to consumers in the future.

An earlier PNNL study shows that creating a smarter grid through information technology could save $80 billion over 20 years nationally by offsetting costs of building new electric infrastructure – the generators, transmission lines and substations that will be required to meet estimated load growth.

Susan Bauer | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>