Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It whistles; change in pitch tells all in this new sonic gas analyzer

20.10.2005


Components of the new Penn State sonic gas analyzer. The sample chamber (bottle) is connected to the analyzer cell (resonator) by a sealed fan (pump) that circulates the gas mixture through the system.


Penn State researchers have developed a prototype sonic gas analyzer that automatically and continuously tracks the concentration of a gas in an air/gas mixture based on changes in pitch.

Miguel Horta, doctoral candidate in acoustics who is currently working on the sonic gas analyzer as part of his dissertation, says, "The system automatically cancels out the background and flow noise and can detect changes in gas concentration as low as 0.003 percent – plenty sensitive enough, for example, to let you know if you’ve got an explosive mixture."

The Penn State researchers are developing the current prototype to track continuously the concentrations of hydrogen produced by bacteria in microbial fuel cells (MFC). In MFCs, bacteria feed on the organic matter in wastewater and produce hydrogen for use as fuel while simultaneously cleaning the water.



However, the researchers say their new system also could be adapted for tracking toxic or flammable gases in mines, sewers or landfills, for hydrogen detectors in battery compartments of boats and electric cars or in industries where gases are consumed as feedstocks.

Horta will detail the system and his measurements on helium, sulfur hexafluoride and hydrogen produced by non-bacterial sources in a talk set for Oct. 19 at the Acoustical Society of America/Society of Noise Control Engineers (ASA/Noise-Con 2005) in Minneapolis, Minn. His presentation is titled Sonic Gas Analyzer for Microbiological Metabolic Measurements. His co-author is his thesis adviser, Dr. Steven Garrett, the United Technologies Corp. professor of acoustics.

Garrett explains that, in the Penn State sonic gas analyzer, a miniature speaker produces a tone barely audible outside the resonator that sounds like a whistle. Two tiny microphones capture the tone, called a resonance frequency, and the two-microphone outputs are then subtracted to double the signal of interest and cancel any extraneous noise before being fed to an electronic tracking system, called a phase-locked loop. This tracking system determines the changes in the resonance frequency caused by the changes in gas concentration, while simultaneously correcting for any changes in the gas temperature.

Horta adds, "If the concentration of a gas in the gas/air mixture passing through the system changes, the new concentration will affect the sound’s speed which will, in turn, change the resonance frequency. That change in resonance frequency or pitch, as detected by the microphones and tracking system, tells us what the change in gas concentration is at every instant without disturbing the system or requiring extraction of gas samples."

Sonic gas analyzers can be used in the same applications as thermal conductivity analyzers, the researchers point out. However, since the sonic gas analyzer only introduces sound, it doesn’t change the temperature of the gas mixture, as do thermal conductivity analyzers.

Garrett notes, "Keeping the temperature unaltered by external devices is crucial to obtaining detailed information about the gas mixture in a microbial fuel cell without affecting the bacteria."

Horta’s measurements on helium, sulfur hexafluoride, and hydrogen show an immediate response by the analyzer to the introduction of a contaminating gas. The necessary time for the gases to become thoroughly mixed within the system varies from approximately 30 seconds for lighter gases like helium and hydrogen to about one minute for the heavier sulfur hexafluoride. Once the gases are mixed, the resonance frequency is stable to about 0.02 Hz, corresponding to a concentration resolution on the order of 30 parts-per-million.

The absolute accuracy of the change in frequency has an uncertainty of about 0.13 Hz for sulfur hexafluoride and 0.6 Hz for helium, corresponding to absolute accuracies in concentration of 0.015 percent and 0.02 percent respectively. In the case of hydrogen, the uncertainty of a concentration measurement is 0.118 percent.

Garrett explains, "An uncertainty of 0.1 percent means that, if we measure a concentration of, say, two percent of helium in air, our statistical error analysis tells us that the value is, for sure, between 1.9 percent and 2.1 percent."

The researchers are working on modifications in the design of the analyzer to further improve the accuracy of the measurements.

The research project is supported by the endowment for the United Technologies Corporation Professorship that Garrett holds.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>