Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shoe leather as a renewable resource: Penn biologists invent power-generating backpack

09.09.2005


If you already have a little spring in your step, a team of biologists at the University of Pennsylvania would like to them to good use by adding a few more springs in the form of a power-generating backpack. Details of their prototype "Suspended-load Backpack" were announced today in the journal Science. The device converts mechanical energy from walking into electricity – up to 7.4 Watts – more than enough energy to power a number of portable electronic devices at once.



"As efficient as batteries have gotten, they still tend to be heavy.

Field researchers, for example, have to carry many replacement batteries to power their equipment, which take up a lot of weight and space in the pack," said Larry Rome, a professor in Penn’s Department of Biology. "The Suspended-load Backpack could help anyone with a need for power on the go, including researchers, soldiers, disaster relief-workers or someone just looking to keep a mobile phone charged during a long trek."


Although "biologist" might seem like an unlikely job title for a mechanical inventor, Rome has found his study of muscular systems of locomotion to be directly applicable to the work. During the war in Afghanistan, the Office of Naval Research approached Rome to develop a means to assist over-burdened soldiers who must carry as much as 20 pounds of spare batteries required to power high-tech equipment such as global positioning systems, communications and night vision devices. A typical soldier already marches into the battlefield carrying 80 pounds of gear, so Rome sought a way to capture the mechanical energy of marching in order to charge a lightweight rechargeable battery that could replace all the spares.

The Suspended-load Backpack is based on a rigid frame pack, much like the type familiar to hikers everywhere; however, rather than being rigidly attached to the frame, the sack carrying the load is suspended from the frame by vertically oriented springs. It is the vertical movement of the backpack contents that provides the mechanical energy to drive a small generator mounted on the frame. Previous efforts to solve dilemma of the over-burdened soldier incorporated devices placed in the heels of boots. According to Rome, however, little mechanical work is actually done at the point where the boots hit the ground.

"As humans walk, they vault over their extended leg, causing the hip to rise 5-7 centimeters on each step. Since the backpack is connected to the hip, it to must be lifted 5-7 centimeters," Rome said. "It is this vertical movement of the backpack that ultimately powers electricity generation."

The amount of power generated depends on how much weight is in the pack and how fast the wearer walks. The Penn researchers tested packs with loads of 40 to 80 pounds and found that the wearer could constantly generate as much as 7.4 Watts while moving at a steady clip. Typically, cell phones – or even night vision goggles – require less than one Watt to power.

Contrary to what might be expected, wearing the Suspended-load Backpack does not use up much more metabolic energy than walking while wearing a conventional backpack of the same weight. According to Rome and his colleagues, it is likely that wearers can change their stride to compensate for movement of the load, which makes walking more efficient.

"Metabolically speaking, we’ve found this to be much cheaper than we anticipated. The energy you exert could be offset by carrying an extra snack, which is nothing compared to weight of extra batteries," Rome said. "Pound for pound, food contains about 100-fold more energy than batteries."

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>