Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shoe leather as a renewable resource: Penn biologists invent power-generating backpack

09.09.2005


If you already have a little spring in your step, a team of biologists at the University of Pennsylvania would like to them to good use by adding a few more springs in the form of a power-generating backpack. Details of their prototype "Suspended-load Backpack" were announced today in the journal Science. The device converts mechanical energy from walking into electricity – up to 7.4 Watts – more than enough energy to power a number of portable electronic devices at once.



"As efficient as batteries have gotten, they still tend to be heavy.

Field researchers, for example, have to carry many replacement batteries to power their equipment, which take up a lot of weight and space in the pack," said Larry Rome, a professor in Penn’s Department of Biology. "The Suspended-load Backpack could help anyone with a need for power on the go, including researchers, soldiers, disaster relief-workers or someone just looking to keep a mobile phone charged during a long trek."


Although "biologist" might seem like an unlikely job title for a mechanical inventor, Rome has found his study of muscular systems of locomotion to be directly applicable to the work. During the war in Afghanistan, the Office of Naval Research approached Rome to develop a means to assist over-burdened soldiers who must carry as much as 20 pounds of spare batteries required to power high-tech equipment such as global positioning systems, communications and night vision devices. A typical soldier already marches into the battlefield carrying 80 pounds of gear, so Rome sought a way to capture the mechanical energy of marching in order to charge a lightweight rechargeable battery that could replace all the spares.

The Suspended-load Backpack is based on a rigid frame pack, much like the type familiar to hikers everywhere; however, rather than being rigidly attached to the frame, the sack carrying the load is suspended from the frame by vertically oriented springs. It is the vertical movement of the backpack contents that provides the mechanical energy to drive a small generator mounted on the frame. Previous efforts to solve dilemma of the over-burdened soldier incorporated devices placed in the heels of boots. According to Rome, however, little mechanical work is actually done at the point where the boots hit the ground.

"As humans walk, they vault over their extended leg, causing the hip to rise 5-7 centimeters on each step. Since the backpack is connected to the hip, it to must be lifted 5-7 centimeters," Rome said. "It is this vertical movement of the backpack that ultimately powers electricity generation."

The amount of power generated depends on how much weight is in the pack and how fast the wearer walks. The Penn researchers tested packs with loads of 40 to 80 pounds and found that the wearer could constantly generate as much as 7.4 Watts while moving at a steady clip. Typically, cell phones – or even night vision goggles – require less than one Watt to power.

Contrary to what might be expected, wearing the Suspended-load Backpack does not use up much more metabolic energy than walking while wearing a conventional backpack of the same weight. According to Rome and his colleagues, it is likely that wearers can change their stride to compensate for movement of the load, which makes walking more efficient.

"Metabolically speaking, we’ve found this to be much cheaper than we anticipated. The energy you exert could be offset by carrying an extra snack, which is nothing compared to weight of extra batteries," Rome said. "Pound for pound, food contains about 100-fold more energy than batteries."

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Power and Electrical Engineering:

nachricht Failures in power grids: Dynamically induced cascades
25.05.2018 | Technische Universität Dresden

nachricht Beyond the limits of conventional electronics: stable organic molecular nanowires
24.05.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>