Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shoe leather as a renewable resource: Penn biologists invent power-generating backpack

09.09.2005


If you already have a little spring in your step, a team of biologists at the University of Pennsylvania would like to them to good use by adding a few more springs in the form of a power-generating backpack. Details of their prototype "Suspended-load Backpack" were announced today in the journal Science. The device converts mechanical energy from walking into electricity – up to 7.4 Watts – more than enough energy to power a number of portable electronic devices at once.



"As efficient as batteries have gotten, they still tend to be heavy.

Field researchers, for example, have to carry many replacement batteries to power their equipment, which take up a lot of weight and space in the pack," said Larry Rome, a professor in Penn’s Department of Biology. "The Suspended-load Backpack could help anyone with a need for power on the go, including researchers, soldiers, disaster relief-workers or someone just looking to keep a mobile phone charged during a long trek."


Although "biologist" might seem like an unlikely job title for a mechanical inventor, Rome has found his study of muscular systems of locomotion to be directly applicable to the work. During the war in Afghanistan, the Office of Naval Research approached Rome to develop a means to assist over-burdened soldiers who must carry as much as 20 pounds of spare batteries required to power high-tech equipment such as global positioning systems, communications and night vision devices. A typical soldier already marches into the battlefield carrying 80 pounds of gear, so Rome sought a way to capture the mechanical energy of marching in order to charge a lightweight rechargeable battery that could replace all the spares.

The Suspended-load Backpack is based on a rigid frame pack, much like the type familiar to hikers everywhere; however, rather than being rigidly attached to the frame, the sack carrying the load is suspended from the frame by vertically oriented springs. It is the vertical movement of the backpack contents that provides the mechanical energy to drive a small generator mounted on the frame. Previous efforts to solve dilemma of the over-burdened soldier incorporated devices placed in the heels of boots. According to Rome, however, little mechanical work is actually done at the point where the boots hit the ground.

"As humans walk, they vault over their extended leg, causing the hip to rise 5-7 centimeters on each step. Since the backpack is connected to the hip, it to must be lifted 5-7 centimeters," Rome said. "It is this vertical movement of the backpack that ultimately powers electricity generation."

The amount of power generated depends on how much weight is in the pack and how fast the wearer walks. The Penn researchers tested packs with loads of 40 to 80 pounds and found that the wearer could constantly generate as much as 7.4 Watts while moving at a steady clip. Typically, cell phones – or even night vision goggles – require less than one Watt to power.

Contrary to what might be expected, wearing the Suspended-load Backpack does not use up much more metabolic energy than walking while wearing a conventional backpack of the same weight. According to Rome and his colleagues, it is likely that wearers can change their stride to compensate for movement of the load, which makes walking more efficient.

"Metabolically speaking, we’ve found this to be much cheaper than we anticipated. The energy you exert could be offset by carrying an extra snack, which is nothing compared to weight of extra batteries," Rome said. "Pound for pound, food contains about 100-fold more energy than batteries."

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>