Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DOE outlines research needed to improve solar energy technologies

15.08.2005


To help achieve the Bush Administration’s goal of increased use of solar and other renewable forms of energy, the Department of Energy’s (DOE) Office of Science has released a report describing the basic research needed to produce "revolutionary progress in bringing solar energy to its full potential in the energy marketplace." The report resulted from a workshop of 200 scientists held earlier this year.

"The tax credits contained in the historic energy bill signed by President Bush will greatly help expand the use of renewable energy," said Dr. Raymond L. Orbach, Director of DOE’s Office of Science. "This research will help improve a critical component of renewable energy, solar technology, in the future. Increasing the use of renewable energy is a clear way to help meet our growing energy needs using environmentally-friendly power sources."

"This report demonstrates the important contribution the entire scientific community can make to the development of new sustainable energy resources," Orbach said. "Science and basic research can and must play a key role in addressing the energy security needs of our nation."



Every hour more energy from sunlight strikes the Earth than is consumed on the planet in a year. Yet today, solar electricity provides only approximately one thousandth of the total electricity supply. The report notes that a "huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research" and that "sunlight is a compelling solution to our need for clean, abundant sources of energy in the future."

The report notes that progress in the proposed research could lead to: artificial "molecular machines" that turn sunlight into chemical fuel; "smart materials" based on nature’s ability to transfer captured solar energy with no energy loss; self-repairing solar conversion systems; devices that absorb all the colors in the solar spectrum for energy conversion, not just a fraction; far more efficient solar cells created using nanotechnologies; and new materials for high-capacity, slow-release thermal storage.

The report further notes that revolutionary breakthroughs come only from basic research and that, "We must understand the fundamental principles of solar energy conversion and develop new materials that exploit them."

Solar energy conversion systems fall into three categories: solar electricity, solar fuels and solar thermal systems. Workshop participants considered the potential of all three approaches. They identified 13 priority research directions with the "potential to produce revolutionary, not evolutionary, breakthroughs in materials and processes for solar energy utilization." Cross-cutting research directions include: coaxing cheap materials to perform as well as expensive materials; developing new solar cell designs that surpass traditional efficiency limits; finding catalysts that enable inexpensive, efficient conversion of solar energy into chemical fuels; and developing materials for solar energy conversion infrastructure, such as transparent conductors and robust, inexpensive thermal management materials.

Jeff Sherwood | EurekAlert!
Further information:
http://www.doe.gov

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>