Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of ’doping’ mechanism in semiconductor nanocrystals

08.07.2005


Novel electronic devices based upon nanotechnology may soon be realized due to a new understanding of how impurities, or ’dopants,’ can be intentionally incorporated into semiconductor nanocrystals. This understanding, announced today by researchers at the Naval Research Laboratory (NRL) and the University of Minnesota (UMN), should help enable a variety of new technologies ranging from high-efficiency solar-cells and lasers to futuristic ’spintronic’ and ultra-sensitive biodetection devices. The complete findings of the study are published in the July 7, 2005, issue of the journal Nature.



Nanocrystals are tiny semiconductor particles just a few millionths of a millimeter across. Due to their small size, they exhibit unique electronic, optical, and magnetic properties that can be utilized in a variety of technologies. To move toward this end, chemical methods have been optimized over the last 20 years to synthesize extremely pure nanocrystals. More problematic, however, has been the goal of controllably incorporating selected impurities into these particles. Conventional semiconductor devices, such as the transistor, would not operate without such impurities. Moreover, theory predicts that dopants should have even greater impact on semiconductor nanocrystals. Thus, doping is a critical step for tailoring their properties for specific applications.

A long-standing mystery has been why impurities could not be incorporated into some types of semiconductor nanocrystals. The findings by NRL and UMN researchers establish the underlying reasons for these difficulties, and provide a rational foundation for resolving them in a wide variety of nanocrystal systems. "The key lies in the nanocrystal’s surface," said Dr. Steven Erwin, a physicist at NRL and lead theorist on the project. "If an impurity atom can stick, or ’adsorb,’ to the surface strongly enough, it can eventually be incorporated into the nanocrystal as it grows. If the impurity binds to the nanocrystal surface too weakly, or if the strongly binding surfaces are only a small fraction of the total, then doping will be difficult." From calculations based on this central idea, the team could predict conditions favorable for doping. Experiments at UMN then confirmed these predictions, including the incorporation of impurities into nanocrystals that were previously believed to be undopable. Thus, a variety of new doped nanocrystals may now be possible, an important advance toward future nanotechnologies.


According to Dr. David Norris, an Associate Professor of Chemical Engineering and Materials Science at UMN and the lead experimentalist on the team, "an exciting aspect of these results is that they overturn a common belief that nanocrystals are intrinsically difficult to dope because they somehow ’self-purify’ by expelling impurities from their interior. According to this view, the same mechanisms that made it possible to grow very pure nanocrystals also made it extremely difficult to dope them. We have shown that doping difficulties are not intrinsic, and indeed are amenable to systematic optimization using straightforward methods from physical chemistry."

Future efforts will focus on incorporating impurities which are chosen for specific applications. For example, solar cells and lasers could benefit from impurities that add an additional electrical charge to the nanocrystal. In addition, impurities will be chosen to explore the use of nanocrystals in spin electronics (or "spintronics"). Spintronic devices utilize the fact that electrons not only possess charge, but also a quantum mechanical spin. The spin provides an additional degree of freedom that can be exploited in devices to realize a host of new spintronic technologies, from. nonvolatile "instant-on" computers to so-called "reconfigurable logic" elements whose underlying circuitry can be changed on-the-fly.

The research was conducted by Dr. Steven Erwin, Dr. Michael Haftel, and Dr. Alexander Efros from NRL’s Materials Science and Technology Division; Dr. Thomas Kennedy from NRL’s Electronics Science and Technology Division; and Ms. Lijun Zu and Professor David Norris from the Department of Chemical Engineering and Materials Science at the University of Minnesota. The Office of Naval Research and the National Science Foundation provided funding for the research.

Donna McKinney | EurekAlert!
Further information:
http://www.ccs.nrl.navy.mil

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>