Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering a new generation of biodiesel

24.06.2005


Neste Oil’s new, proprietary NExBTL technology for producing biodiesel marks an important step forward in efforts to meet the growing demand for this type of fuel, as it offers not only valuable production-related benefits, but also results in a fuel with excellent product properties, particularly at low temperatures.



Various companies have experimented with the idea of combining a natural raw material with an oil refining process to produce a biofuel capable of competing with hydrocarbon-based equivalents, but with limited success – until NExBTL that is.

A €100 million, 170,000 t/a plant currently under construction at Porvoo in Finland, and due for completion in summer 2007, will showcase the new technology.


“We are the first oil company to successfully develop a biodiesel production process, and the first to build significant capacity for producing biodiesel,” according to Development Manager Raimo Linnaila of Neste Oil’s Components Unit. “The new fuel is also an ideal fit with Neste Oil’s overall strategic commitment to low-emission fuels.”

NExBTL technology is the outcome of manufacturing tests that begun in the mid-1990s, and an R&D programme launched in 2001, involving not only a team from Neste Oil itself, but also people from various Finnish universities and VTT, the Technical Research Centre of Finland.

One of the major strengths of the new technology, from a production point of view, is that it can use either vegetable oil or animal fat as its raw material. This enables input to be sourced both flexibly and cost-effectively.

Not only that, the quality of the end-product fuel is very consistent, and free from the quality fluctuations typical of the methyl ester currently sold as biodiesel in Central Europe, for example.

In addition to consistent quality, Neste Oil’s biodiesel offers good cold tolerance and storage properties, a high cetane number, and extremely low exhaust emissions. The good performance of NExBTL biodiesel at low temperatures, an area where methyl ester-type biodiesels normally come unstuck, is a particular advantage.

Tests carried out by Neste Oil and various automotive manufacturers have shown that NExBTL biodiesel functions excellently in both car and truck engines, and performs within the key requirements set for new fuels over the next few years, in areas such as particulate and nitrogen oxide emissions.

NExBTL biodiesel is equally suitable for both old and new vehicles, and promises to be an ideal solution for meeting the growing demand for biodiesel. The EU, for example, has set a goal of having close to 6% of vehicles in the Community running on biofuels by the end of 2010, and countries such as Germany, France, and Sweden have already introduced tax breaks to promote the use of biofuels.

Anna Niemelae | alfa
Further information:
http://www.tekes.fi

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>