Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From photovoltaics to solar thermal collectors: Evaluating and improving green design

03.05.2005


Relatively few good examples exist of buildings that have excellent energy performance. Often "green buildings" are developed and publicized, but then actual energy functioning is not reported, sometimes because performance is less than anticipated. Having inhabited its new green headquarters for the first year, The Woods Hole Research Center is addressing those issues by tracking, and making publicly available, information on the performance of its building.



Because the Research Center’s Ordway Campus incorporates so many different efficiency and renewable (clean) energy collection strategies, Center staff decided to display the energy flows through the building in a series of web pages designed to provide a full overview of the building’s energy performance. This near-real time display collects and synthesizes data from over 70 different sensors which measure flows of electricity, heat, and fluids (air and water) into and out of the building as well as the site’s local environmental conditions. These pages provide information and data to interested members of the public as well as other organizations and institutions considering innovations like these for their own facilities.

According to Joe Hackler, a research associate at the Center, "Engineering is, by nature, conservative – and if large gains are to be made in the efficient design and specification of mechanical systems to support very efficient building design and operation, the engineering community needs real performance data to support their efforts. The ’public face’ of the monitoring system is designed to encourage any one to come in and explore how energy flows through a building of advanced design such as this one."


By using the facility as an example, and providing real-time data, the Center’s experience can become a model for others to evaluate and emulate. In designing the project, the Center chose to use commercially available equipment and technologies to demonstrate that large gains in efficiency are easily made with good design and good construction practice.

In its first year, the Woods Hole Research Center facility has performed near expectations. Even with a facility that is nearly twice the size of the Center’s previous combined offices and labs, the Center is using less total energy and spending less money on energy while reducing emissions attributable to operations to 28 percent of its previous total (a surprising 13 percent of the national office average for a building of the same size). Total energy usage was 89,669 kWh, with 30,469 kWh being generated onsite by a photovoltaic (PV) system, indicating that 34 percent of the facility’s total energy requirement was provided by its own PV system.

While the building performs to a very high standard, the process of monitoring the facilities actual performance has uncovered some energy use inefficiencies. In addition, an overheating computer room located on the ground floor in a space not easily vented; electrical usage that cannot yet be attributed to a specific source; and higher than expected pumping costs are issues being evaluated. When remedied, the solutions will lead to continued improvements in overall performance.

The building, located on the Gilman Ordway Campus in Woods Hole, Massachusetts, was designed by William McDonough + Partners. Marc Rosenbaum designed the energy systems. The facility received a first prize in the 2004 Northeast Green Building Award in the "place of work (small buildings)" category from the Northeast Sustainable Energy Association. In recognition of Earth Day 2004, the American Institute of Architects (AIA) cited the Ordway Campus as one of the nation’s ten best examples of "green design" in the AIA/COTE 2004 Top Ten Green Projects Competition.

The Woods Hole Research Center is dedicated to science, education and public policy for a habitable Earth, seeking to conserve and sustain forests, soils, water, and energy by demonstrating their value to human health and economic prosperity.

The Woods Hole Research Center sponsors initiatives in the Amazon, the Arctic, Africa, Russia, Boreal North America, the Mid-Atlantic, New England and Cape Cod. Center programs focus on the global carbon cycle, forest function, landcover/land use, water cycles and chemicals in the environment, science in public affairs, and education, providing primary data and enabling better appraisals of the trends in forests that influence their role in the global carbon budget.

Founded in 1985 by George Woodwell, the Woods Hole Research Center has approximately 40 staff members, consisting of scientists, international law and policy experts, researchers, and administrative staff.

Elizabeth Braun | EurekAlert!
Further information:
http://www.whrc.org

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>