Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From photovoltaics to solar thermal collectors: Evaluating and improving green design

03.05.2005


Relatively few good examples exist of buildings that have excellent energy performance. Often "green buildings" are developed and publicized, but then actual energy functioning is not reported, sometimes because performance is less than anticipated. Having inhabited its new green headquarters for the first year, The Woods Hole Research Center is addressing those issues by tracking, and making publicly available, information on the performance of its building.



Because the Research Center’s Ordway Campus incorporates so many different efficiency and renewable (clean) energy collection strategies, Center staff decided to display the energy flows through the building in a series of web pages designed to provide a full overview of the building’s energy performance. This near-real time display collects and synthesizes data from over 70 different sensors which measure flows of electricity, heat, and fluids (air and water) into and out of the building as well as the site’s local environmental conditions. These pages provide information and data to interested members of the public as well as other organizations and institutions considering innovations like these for their own facilities.

According to Joe Hackler, a research associate at the Center, "Engineering is, by nature, conservative – and if large gains are to be made in the efficient design and specification of mechanical systems to support very efficient building design and operation, the engineering community needs real performance data to support their efforts. The ’public face’ of the monitoring system is designed to encourage any one to come in and explore how energy flows through a building of advanced design such as this one."


By using the facility as an example, and providing real-time data, the Center’s experience can become a model for others to evaluate and emulate. In designing the project, the Center chose to use commercially available equipment and technologies to demonstrate that large gains in efficiency are easily made with good design and good construction practice.

In its first year, the Woods Hole Research Center facility has performed near expectations. Even with a facility that is nearly twice the size of the Center’s previous combined offices and labs, the Center is using less total energy and spending less money on energy while reducing emissions attributable to operations to 28 percent of its previous total (a surprising 13 percent of the national office average for a building of the same size). Total energy usage was 89,669 kWh, with 30,469 kWh being generated onsite by a photovoltaic (PV) system, indicating that 34 percent of the facility’s total energy requirement was provided by its own PV system.

While the building performs to a very high standard, the process of monitoring the facilities actual performance has uncovered some energy use inefficiencies. In addition, an overheating computer room located on the ground floor in a space not easily vented; electrical usage that cannot yet be attributed to a specific source; and higher than expected pumping costs are issues being evaluated. When remedied, the solutions will lead to continued improvements in overall performance.

The building, located on the Gilman Ordway Campus in Woods Hole, Massachusetts, was designed by William McDonough + Partners. Marc Rosenbaum designed the energy systems. The facility received a first prize in the 2004 Northeast Green Building Award in the "place of work (small buildings)" category from the Northeast Sustainable Energy Association. In recognition of Earth Day 2004, the American Institute of Architects (AIA) cited the Ordway Campus as one of the nation’s ten best examples of "green design" in the AIA/COTE 2004 Top Ten Green Projects Competition.

The Woods Hole Research Center is dedicated to science, education and public policy for a habitable Earth, seeking to conserve and sustain forests, soils, water, and energy by demonstrating their value to human health and economic prosperity.

The Woods Hole Research Center sponsors initiatives in the Amazon, the Arctic, Africa, Russia, Boreal North America, the Mid-Atlantic, New England and Cape Cod. Center programs focus on the global carbon cycle, forest function, landcover/land use, water cycles and chemicals in the environment, science in public affairs, and education, providing primary data and enabling better appraisals of the trends in forests that influence their role in the global carbon budget.

Founded in 1985 by George Woodwell, the Woods Hole Research Center has approximately 40 staff members, consisting of scientists, international law and policy experts, researchers, and administrative staff.

Elizabeth Braun | EurekAlert!
Further information:
http://www.whrc.org

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>