Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From photovoltaics to solar thermal collectors: Evaluating and improving green design

03.05.2005


Relatively few good examples exist of buildings that have excellent energy performance. Often "green buildings" are developed and publicized, but then actual energy functioning is not reported, sometimes because performance is less than anticipated. Having inhabited its new green headquarters for the first year, The Woods Hole Research Center is addressing those issues by tracking, and making publicly available, information on the performance of its building.



Because the Research Center’s Ordway Campus incorporates so many different efficiency and renewable (clean) energy collection strategies, Center staff decided to display the energy flows through the building in a series of web pages designed to provide a full overview of the building’s energy performance. This near-real time display collects and synthesizes data from over 70 different sensors which measure flows of electricity, heat, and fluids (air and water) into and out of the building as well as the site’s local environmental conditions. These pages provide information and data to interested members of the public as well as other organizations and institutions considering innovations like these for their own facilities.

According to Joe Hackler, a research associate at the Center, "Engineering is, by nature, conservative – and if large gains are to be made in the efficient design and specification of mechanical systems to support very efficient building design and operation, the engineering community needs real performance data to support their efforts. The ’public face’ of the monitoring system is designed to encourage any one to come in and explore how energy flows through a building of advanced design such as this one."


By using the facility as an example, and providing real-time data, the Center’s experience can become a model for others to evaluate and emulate. In designing the project, the Center chose to use commercially available equipment and technologies to demonstrate that large gains in efficiency are easily made with good design and good construction practice.

In its first year, the Woods Hole Research Center facility has performed near expectations. Even with a facility that is nearly twice the size of the Center’s previous combined offices and labs, the Center is using less total energy and spending less money on energy while reducing emissions attributable to operations to 28 percent of its previous total (a surprising 13 percent of the national office average for a building of the same size). Total energy usage was 89,669 kWh, with 30,469 kWh being generated onsite by a photovoltaic (PV) system, indicating that 34 percent of the facility’s total energy requirement was provided by its own PV system.

While the building performs to a very high standard, the process of monitoring the facilities actual performance has uncovered some energy use inefficiencies. In addition, an overheating computer room located on the ground floor in a space not easily vented; electrical usage that cannot yet be attributed to a specific source; and higher than expected pumping costs are issues being evaluated. When remedied, the solutions will lead to continued improvements in overall performance.

The building, located on the Gilman Ordway Campus in Woods Hole, Massachusetts, was designed by William McDonough + Partners. Marc Rosenbaum designed the energy systems. The facility received a first prize in the 2004 Northeast Green Building Award in the "place of work (small buildings)" category from the Northeast Sustainable Energy Association. In recognition of Earth Day 2004, the American Institute of Architects (AIA) cited the Ordway Campus as one of the nation’s ten best examples of "green design" in the AIA/COTE 2004 Top Ten Green Projects Competition.

The Woods Hole Research Center is dedicated to science, education and public policy for a habitable Earth, seeking to conserve and sustain forests, soils, water, and energy by demonstrating their value to human health and economic prosperity.

The Woods Hole Research Center sponsors initiatives in the Amazon, the Arctic, Africa, Russia, Boreal North America, the Mid-Atlantic, New England and Cape Cod. Center programs focus on the global carbon cycle, forest function, landcover/land use, water cycles and chemicals in the environment, science in public affairs, and education, providing primary data and enabling better appraisals of the trends in forests that influence their role in the global carbon budget.

Founded in 1985 by George Woodwell, the Woods Hole Research Center has approximately 40 staff members, consisting of scientists, international law and policy experts, researchers, and administrative staff.

Elizabeth Braun | EurekAlert!
Further information:
http://www.whrc.org

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent
25.09.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>