Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Grass makes environmentally friendly biofuel


Grow grass, not for fun but for fuel. Burning grass for energy has been a well-accepted technology in Europe for decades. But not in the United States.

Yet burning grass pellets as a biofuel is economical, energy-efficient, environmentally friendly and sustainable, says a Cornell University forage crop expert.

This alternative fuel easily could be produced and pelleted by farmers and burned in modified stoves built to burn wood pellets or corn, says Jerry Cherney, the E.V. Baker Professor of Agriculture. Burning grass pellets hasn’t caught on in the United States, however, Cherney says, primarily because Washington has made no effort to support the technology with subsidies or research dollars.

"Burning grass pellets makes sense; after all, it takes 70 days to grow a crop of grass for pellets, but it takes 70 million years to make fossil fuels," says Cherney, who notes that a grass-for-fuel crop could help supplement farmers’ incomes. Cherney presented the case for grass biofuel at a U.S. Department of Agriculture-sponsored conference, Greenhouse Gases and Carbon Sequestration in Agriculture and Forestry, held March 21-24 in Baltimore.

"Grass pellets have great potential as a low-tech, small-scale, renewable energy system that can be locally produced, locally processed and locally consumed, while having a positive impact on rural communities," Cherney told the conference.

The downside? "Unfortunately grass has no political lobby, which makes the start up of any new alternative energy industry problematic," says Cherney. He notes that a pellet-fuel industry was successfully established in Europe by providing subsidies to the industry. And even though the ratio of the amount of energy needed to produce grass pellets to the amount of energy they produce is much more favorable than for other biomass crops, the lack of government support prevents the industry from going forward, he says.

Cherney has made a comparison of wood pellets with various mixes of grasses and the BTUs (British Thermal Units) produced per pound. He has found that grass pellets can be burned without emissions problems, and they have 96 percent of the BTUs of wood pellets. He also notes that grass produces more ash than wood -- meaning more frequent cleaning -- of stoves. Currently, he is testing the burning of pellets made from grasses, such as timothy and orchard grass, as well as weeds, such as goldenrod, in pellet stoves at Cornell’s Mt. Pleasant Research Farm. This demonstration project is funded by Cornell’s Agricultural Experiment Station.

Cherney points out that grass biofuel pellets are much better for the environment because they emit up to 90 percent less greenhouse gases than oil, coal and natural gas do. Furthermore, he says, grass is perennial, does not require fertilization and can be grown on marginal farmland.

"Any mixture of grasses can be used, cut in mid- to late summer, left in the field to leach out minerals, then baled and pelleted. Drying of the hay is not required for pelleting, making the cost of processing less than with wood pelleting," says Cherney. "The bottom line is that pelletized grass has the potential to be a major affordable, unsubsidized fuel source capable of meeting home and small business heating requirements at less cost than all available alternatives."

Nicola Pytell | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>