Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grass makes environmentally friendly biofuel

01.04.2005


Grow grass, not for fun but for fuel. Burning grass for energy has been a well-accepted technology in Europe for decades. But not in the United States.



Yet burning grass pellets as a biofuel is economical, energy-efficient, environmentally friendly and sustainable, says a Cornell University forage crop expert.

This alternative fuel easily could be produced and pelleted by farmers and burned in modified stoves built to burn wood pellets or corn, says Jerry Cherney, the E.V. Baker Professor of Agriculture. Burning grass pellets hasn’t caught on in the United States, however, Cherney says, primarily because Washington has made no effort to support the technology with subsidies or research dollars.


"Burning grass pellets makes sense; after all, it takes 70 days to grow a crop of grass for pellets, but it takes 70 million years to make fossil fuels," says Cherney, who notes that a grass-for-fuel crop could help supplement farmers’ incomes. Cherney presented the case for grass biofuel at a U.S. Department of Agriculture-sponsored conference, Greenhouse Gases and Carbon Sequestration in Agriculture and Forestry, held March 21-24 in Baltimore.

"Grass pellets have great potential as a low-tech, small-scale, renewable energy system that can be locally produced, locally processed and locally consumed, while having a positive impact on rural communities," Cherney told the conference.

The downside? "Unfortunately grass has no political lobby, which makes the start up of any new alternative energy industry problematic," says Cherney. He notes that a pellet-fuel industry was successfully established in Europe by providing subsidies to the industry. And even though the ratio of the amount of energy needed to produce grass pellets to the amount of energy they produce is much more favorable than for other biomass crops, the lack of government support prevents the industry from going forward, he says.

Cherney has made a comparison of wood pellets with various mixes of grasses and the BTUs (British Thermal Units) produced per pound. He has found that grass pellets can be burned without emissions problems, and they have 96 percent of the BTUs of wood pellets. He also notes that grass produces more ash than wood -- meaning more frequent cleaning -- of stoves. Currently, he is testing the burning of pellets made from grasses, such as timothy and orchard grass, as well as weeds, such as goldenrod, in pellet stoves at Cornell’s Mt. Pleasant Research Farm. This demonstration project is funded by Cornell’s Agricultural Experiment Station.

Cherney points out that grass biofuel pellets are much better for the environment because they emit up to 90 percent less greenhouse gases than oil, coal and natural gas do. Furthermore, he says, grass is perennial, does not require fertilization and can be grown on marginal farmland.

"Any mixture of grasses can be used, cut in mid- to late summer, left in the field to leach out minerals, then baled and pelleted. Drying of the hay is not required for pelleting, making the cost of processing less than with wood pelleting," says Cherney. "The bottom line is that pelletized grass has the potential to be a major affordable, unsubsidized fuel source capable of meeting home and small business heating requirements at less cost than all available alternatives."

Nicola Pytell | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>