Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ability to detect explosives boosted one thousand-fold by new device

15.03.2005


Star Trek-like technology being developed at The University of Arizona might soon screen airplane passengers for explosives as they walk through a portal similar to a metal detector while hand-held units scan their baggage.



The new device is about 1,000 times more sensitive than the equipment currently used in airports to discern explosives. Rather than analyzing a swab from a person’s briefcase, the new technology could detect the traces of explosives left in air that passes over a person who has handled explosives.

"This is a form of tricorder," said M. Bonner Denton, the professor of chemistry at UA in Tucson who’s spearheading the new technology. Denton said combining such technology with a walk-through portal would make it simple to screen 100 percent of passengers.


The new device can be pocket-sized. The analyzers currently used in airports are about the size of a table-top microwave oven. Denton, UA scientist Roger Sperline and Christopher Gresham and David Jones of Sandia National Laboratories in Albuquerque, N.M. are working on developing a hand-held analyzer capable of detecting small traces of explosives or illicit drugs.

Such a device could be used at border crossings, Denton said. "This is more sensitive than dogs’ noses. It does not suffer from overexposure or a case of sinus. One can store it in the cabinet, then grab the unit, turn it on – and it’s running. And it tells you what material has been detected. Dogs just tell you something’s been detected."

Denton will talk about this and other portable detection instruments on Monday, March 14, at 2 p.m. Eastern Time (11 a.m Pacific Time) at the 229th American Chemical Society national meeting in San Diego. His talk, "Advanced Instrumental Technologies and Their Impact on Homeland Security and on Forensic Science," will be given in Room 25C of the San Diego Convention Center.

Detecting explosives or drugs means sorting through an environmental mish-mash of chemical signals to pick out the one chemical of interest. That’s what a drug-sniffing dog’s nose does – picks out the chemical signature of a drug from the chemicals that come from the dirty laundry, candy, food stains, fabrics, toothpaste and everything else inside someone’s luggage.

To do the same thing to detect explosives, machines at airport screening stations use a technology called ion mobility spectrometry.

Ions, or charged molecules, move when placed in an electric field. The speed at which an ion moves depends on its size and shape, so each ion has a characteristic speed. The airport analyzers snatch a collection of chemicals gathered from a person’s luggage, put those chemicals into an electric field and then search for any ion that has a speed that indicates "explosive."

The machine needs a certain number of molecules to accurately detect and identify a specific chemical. If there are very few molecules of a particular substance, the machine cannot distinguish that molecule from all the others in the mix.

Denton realized that one place to improve detection was the electronics of ion mobility spectrometers. So he adapted circuitry originally developed for use in infrared astronomy.

The new device, called a capacitive transimpedance amplifier, improves the readout circuitry in ion mobility spectrometers.

"This change in readout electronics is key to the vastly improved sensitivity. It boosts the signal while lowering the noise," Denton said. "This is the first radical change in ion detection since the 1930s."

Jeff Harrison | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>