Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ability to detect explosives boosted one thousand-fold by new device

15.03.2005


Star Trek-like technology being developed at The University of Arizona might soon screen airplane passengers for explosives as they walk through a portal similar to a metal detector while hand-held units scan their baggage.



The new device is about 1,000 times more sensitive than the equipment currently used in airports to discern explosives. Rather than analyzing a swab from a person’s briefcase, the new technology could detect the traces of explosives left in air that passes over a person who has handled explosives.

"This is a form of tricorder," said M. Bonner Denton, the professor of chemistry at UA in Tucson who’s spearheading the new technology. Denton said combining such technology with a walk-through portal would make it simple to screen 100 percent of passengers.


The new device can be pocket-sized. The analyzers currently used in airports are about the size of a table-top microwave oven. Denton, UA scientist Roger Sperline and Christopher Gresham and David Jones of Sandia National Laboratories in Albuquerque, N.M. are working on developing a hand-held analyzer capable of detecting small traces of explosives or illicit drugs.

Such a device could be used at border crossings, Denton said. "This is more sensitive than dogs’ noses. It does not suffer from overexposure or a case of sinus. One can store it in the cabinet, then grab the unit, turn it on – and it’s running. And it tells you what material has been detected. Dogs just tell you something’s been detected."

Denton will talk about this and other portable detection instruments on Monday, March 14, at 2 p.m. Eastern Time (11 a.m Pacific Time) at the 229th American Chemical Society national meeting in San Diego. His talk, "Advanced Instrumental Technologies and Their Impact on Homeland Security and on Forensic Science," will be given in Room 25C of the San Diego Convention Center.

Detecting explosives or drugs means sorting through an environmental mish-mash of chemical signals to pick out the one chemical of interest. That’s what a drug-sniffing dog’s nose does – picks out the chemical signature of a drug from the chemicals that come from the dirty laundry, candy, food stains, fabrics, toothpaste and everything else inside someone’s luggage.

To do the same thing to detect explosives, machines at airport screening stations use a technology called ion mobility spectrometry.

Ions, or charged molecules, move when placed in an electric field. The speed at which an ion moves depends on its size and shape, so each ion has a characteristic speed. The airport analyzers snatch a collection of chemicals gathered from a person’s luggage, put those chemicals into an electric field and then search for any ion that has a speed that indicates "explosive."

The machine needs a certain number of molecules to accurately detect and identify a specific chemical. If there are very few molecules of a particular substance, the machine cannot distinguish that molecule from all the others in the mix.

Denton realized that one place to improve detection was the electronics of ion mobility spectrometers. So he adapted circuitry originally developed for use in infrared astronomy.

The new device, called a capacitive transimpedance amplifier, improves the readout circuitry in ion mobility spectrometers.

"This change in readout electronics is key to the vastly improved sensitivity. It boosts the signal while lowering the noise," Denton said. "This is the first radical change in ion detection since the 1930s."

Jeff Harrison | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>