Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular wires & corrosion control boost performance of conductive adhesives

14.03.2005


Replacing lead-based solder



Electrically conductive adhesive (ECA) materials offer the electronics industry an alternative to the tin-lead solder now used for connecting display driver chips, memory chips and other devices to circuit boards. But before these materials find broad application in high-end electronic equipment, researchers will have to overcome technical challenges that include low current density.

Using self-assembled monolayers – essentially molecular wires – and a three-part anti-corrosion strategy, researchers at the Georgia Institute of Technology have made significant advances toward solving those problems. At the 229th national meeting of the American Chemical Society on March 13th, the researchers will describe improvements that could allow ECA materials to conduct electrical current as well as the metal alloy solders they are designed to replace.


The research has been sponsored by the National Science Foundation, the U.S. Environmental Protection Agency and several electronic interconnect companies.

"In certain applications that require high current densities, conductive adhesives still do not measure up to metallic solders," noted C.P. Wong, a Regents Professor in Georgia Tech’s School of Materials Science and Engineering. "However, by using these self-assembled molecular wires and controlling corrosion at the interface, we can significantly increase the current density."

For environmental reasons, manufacturers are moving away from the tin-lead alloys now used to make the connections for integrating devices into such products as computers, PDAs, and cell phones. Japanese manufacturers adopted lead-free electronic interconnection technology in January 2005, and European Union manufacturers are expected to follow suit in June 2006.

Though the United States has no official requirement for halting the use of lead, the European and Japanese decisions have spurred new research into alternative materials. Those alternatives fall into two categories: (1) alloys that combine tin with such metals as silver, gold, copper, bismuth or antimony, and (2) conductive adhesives that combine flakes of silver, nickel or gold with an organic polymer matrix.

Each alternative has its own set of advantages and disadvantages.

Most solders containing two or three metals – such as tin-silver (SnAg) and tin-silver-copper (Sn/Ag/Cu) – have a melting point higher than eutectic tin-lead alloy solder, increasing the thermal stress placed on components being connected. The higher reflow temperatures, up to 260 degrees Celsius versus 230 degrees, also require more costly circuit board materials and increase energy costs.

Conductive adhesives could simplify electronics manufacture by eliminating several processing steps, including the need for acid flux and cleaning with detergent and water. Because the materials can be cured at lower temperatures – about 150 degrees Celsius and potentially even room temperature – they would produce less thermal stress on components, require less energy and use existing circuit board materials.

"Conductive adhesives have a lot of advantages, but there are a few challenges," Wong noted. "After you attach a component to a board with conductive adhesives and then cure it, you must test the connections under conditions of high humidity and heat. When you do that, electrical resistance in the joints increases and conductivity drops. That is a major problem for the industry."

At first, scientists and engineers believed the problem was caused by oxidation. But Wong and colleagues at the National Science Foundation-supported Packaging Research Center showed that galvanic corrosion, caused by contact between dissimilar metals in the adhesive and tin-lead alloys used in device contacts, was the real culprit. They have since published numerous papers describing strategies for fighting corrosion.

"By understanding this galvanic corrosion, we can develop improved materials that use an inhibitor such as acid to protect the contacts from corrosion, and we can use an oxygen scavenger such as hydroquinone to grab the oxygen required for corrosion to take place," he said. "We can also include a sacrificial material with a lower potential metal that is first attacked by corrosion process, sparing the conductive materials."

Further improvements were made by substituting short-chain dicarboxylic acids for the surfactant stearic acid used to prevent agglomeration of the silver flakes. Replacing or reducing the stearic acid – which acts as an insulator around the silver flakes – further improved current flow.

Still, the current density accommodated by conductive adhesives fell short of what’s needed to support power-hungry devices like processors.

To overcome that challenge, Wong and collaborators Grace Yi Li and Kyoung-sik Moon developed self-assembled monolayers (SAM) – essentially molecular wires – made up of sulfur-containing conductive materials known as thiols. Less than 10 Angstroms long, these molecules chemically bind to gold pads in the device and board, providing a direct electrical connection that bypasses the resistance normally found at the interface.

"Recent studies show that with incorporation of these self-assembled monolayers, the electrical conductivity and current-carrying capability of conductive adhesives could compete well with traditional solder joints," Wong said. "This could be a significant advance in improving these materials."

But like most advances, the SAM structures aren’t yet optimized. Testing shows that they begin to decompose at temperatures above 150 degrees Celsius.

"We need additional research in this area to develop more stable materials that are still able to carry the current density required and have the necessary mechanical properties," said Li, a graduate student in Wong’s laboratory.

John Toon | EurekAlert!
Further information:
http://www.edi.gatech.edu

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>