Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mini Generator Has Enough Power to Run Electronics

24.11.2004


The microgenerator produces useful amounts of electricity by spinning a small magnet above a mesh of coils fabricated on a chip


New microengines would be smaller, last 10 times longer than batteries

It may be tiny, but a new microgenerator developed at Georgia Tech can now produce enough power to run a small electronic device, like a cell phone, and may soon be able to power a laptop. The microgenerator is about 10 millimeters wide, or about the size of a dime. When coupled with a similarly sized gas-fueled microturbine (or jet) engine, the system, called a microengine, has the potential to deliver more energy and last 10 times longer than a conventional battery.

Developed by doctoral candidate David Arnold, postdoctoral fellows Dr. Iulica Zana and Dr. Jin-Woo Park, and Professor Mark Allen, in the School of Electrical and Computer Engineering at Georgia Tech, the microgenerator produces useful amounts of electricity by spinning a small magnet above a mesh of coils fabricated on a chip. The microelectromechanical system (MEMS) was developed in close collaboration with Sauparna Das and Dr. Jeffrey Lang in the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology (MIT).



While work has been underway for several years on various microengine concepts, Georgia Tech’s generator has now demonstrated the ability to produce the wattage necessary to power an electronic device, Arnold said. “We can now get macro-scale power from a micro-scale device,” Arnold added. This advancement is a key step in microengines someday being incorporated into products and possibly replacing conventional batteries in certain electronics. “This is an important step in the development of MEMS-based micro-power systems,” Allen said.

The device’s magnet spins at 100,000 revolutions per minute (rpm), much faster than the comparatively sluggish 3,000 rpm of an average car engine. Speed like that is capable of producing 1.1 watts of power, or enough juice to run a cell phone. If the project reaches its projected goal, it will eventually produce as much as 20 to 50 watts, capable of powering a laptop.

The research is part of a larger project funded by the Army Research Laboratory to create lighter portable power sources to replace the heavy batteries that currently power a soldier’s equipment, such as laptops, radios, and GPS systems. Researchers at the University of Maryland and Clark Atlanta University also collaborate on the project.

One of the team’s key problems was figuring out how to spin the magnet fast enough to get useful amounts of power, while keeping the magnet from breaking apart. High-performance magnets are brittle and easily broken up by the centrifugal force created by high speeds. To overcome this problem, the researchers have optimized the magnet dimensions and encased it in a titanium alloy to increase its strength.

In the lab, the team used an air-powered drill — similar to what a dentist would use — that simulates the spinning of the magnet by the micro gas turbine (still under development at MIT). Now that initial tests have been successful, they hope to increase the speeds to what would be used in an actual microengine to squeeze out more power.

The Georgia Tech/MIT team will present their progress with the project at the International Conference on Micro Electro Mechanical Systems (MEMS) in January.

Megan McRainey | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>