Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor network mimics synchronized calling by frogs and cicadas

17.11.2004


The modern world is filled with the uncoordinated beeping and buzzing of countless electronic devices. So it was only a matter of time before someone designed an electronic network with the ability to synchronize dozens of tiny buzzers, in much the same way that frogs and cicadas coordinate their night-time choruses.



"Several years ago I was on a camping trip and we pitched our tent in an area that was filled with hundreds of tree frogs," says Kenneth D. Frampton, an assistant professor of mechanical engineering at Vanderbilt University, who dreamed up the project. "The frogs were so loud that I couldn’t get to sleep. So I began listening to the chorus and was fascinated by how the pattern of synchronized calling moved around: Frogs in one area would croak all together for a while, then gradually one group would develop a different rhythm and drift off on its own."

Last summer’s emergence of cicada brood X brought back that memory and prompted Frampton to assign undergraduates Efosa Ojomo and Praveen Mudindi--working under the supervision of graduate student Isaac Amundson--with the task of simulating this complex natural behavior using a wireless distributed sensor network. They presented the results of their project on Nov. 16 at the annual meeting of the American Acoustical Society in San Diego.


Consulting the literature about animal vocalizations, the engineers discovered that a number of different theories have been advanced to explain such naturally occurring synchronized behaviors. They may have evolved cooperatively in order to maximize signal loudness, to confuse predators or to improve call features that attract potential mates. Or they may have evolved competitively in order to mask or jam the calls of nearby animals. "Whichever theory is true, it is clear that these behavior patterns are complex and offer an interesting inspiration for group behaviors," says Frampton.

One thing that these behaviors have in common is that they are produced by groups of animals who are in communication with each other but who are acting on their own. Networks consisting of nodes that communicate with each other but act independently according to simple rules are becoming increasingly popular and were the obvious system to use. "There is a great deal that we do not yet know about the group behavior of such systems," says Frampton. "So, in addition to being a lot of fun, the synchronized calling experiment is adding to our understanding of the behavior of this kind of network."

The engineers began with a wireless network of 15 to 20 "Motes," a wireless network designed by computer scientists at the University of California, Berkeley and manufactured commercially by Crossbow Inc. These are small microprocessors equipped with wireless communications. The researchers added a microphone and a buzzer to each node.

To mimic synchronized calling behaviors, the researchers first programmed a single leader, dubbed the alpha node, to begin calling (buzzing) with an arbitrary duration and frequency. The alpha node was set so it called at this rate regardless of any other calling in its vicinity. The remainder of the devices, referred to as beta nodes, were programmed differently. They were instructed to listen with their microphones and when they hear a call that is sufficiently loud, to estimate its duration and frequency and then begin calling in synch with the detected call. "Although this behavioral algorithm is quite simple, it produces some interesting group behaviors," Frampton reports.

When all is quiet and an alpha node begins calling, at first only those beta nodes nearby hear the call and respond. Then, as more betas swell the chorus, nodes farther away hear the call and join in. In this fashion, synchronized calling gradually spreads concentrically out from the alpha node until all the nodes are synchronized.

A second interesting behavior occurs when a beta node "hiccups" and starts buzzing out of synch with its neighbors. Such hiccups can be caused by measurement noise, operating system jitter and other factors. Occasionally, when such a hiccup occurs, neighboring nodes resynchronize to the errant node. Normally, these transients quickly disappear as the wayward group resynchronizes with the larger group.

The most interesting behavior pattern appeared when the researchers introduced a third kind of node that they labeled omega. This node was programmed identically to an alpha node but set to a different duration and frequency. When introduced into the array, an omega node begins to attract neighboring nodes to its call cycle. Unlike the hiccup case, however, the omega group does not resynchronize with the original group. Rather, the omega node eventually recruits a growing number of nodes to its calling cycle until a "balance of power" is reached with the alpha node. The eventual balance between the two groups depends strongly on the initial arrangement of the sensors.

"While this is a rather whimsical application of a sensor network, it demonstrates the unique system behaviors that can arise in truly distributed processing," says Frampton. Even when nodes follow very simple rules, the behavior of the group can be quite complex. Although this project is not likely to improve knowledge on synchronized calling in nature, it does demonstrate the types of complex behavior patterns that will be important for future developments in sensor networks, Frampton says.

David F. Salisbury | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
23.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>