Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Groundbreaking research could ignite new solutions to heat transfer in nano-devices


For the first time, an innovative research technique successfully completed a detailed measurement of how heat energy is created at the molecular level, an approach that could have far reaching implications for developing nano-devices.

Research results to be published in the upcoming issue of Science, detail a collaborative effort involving The University of Scranton, a Jesuit university in Pennsylvania, and the University of Illinois at Urbana-Champaign, a research institution in Illinois. "This is the first time that anyone has measured how a specific motion of a molecule on one side of a molecular wall causes molecules within the wall to move," said John Deak, Ph.D., assistant professor of chemistry at The University of Scranton. "In nanotechnology, researchers design materials whose properties originate in clusters of molecules on the nanometer level. This research can be used to help us better understand how molecules interact on these dimensions."

The faculty and students involved were Dr. Deak and his undergraduate student Timothy Sechler; and University of Illinois chemistry professor Dana Dlott, Ph.D., Yoonsoo Pang, graduate assistant, and Zhaohui Wang, post-doctoral research associate. "The experiment detailed the pathways for energy transfer and also provided the tools to study other molecules," said Dr. Dlott. "In designing nanoscale devices, the shapes of the molecules must be designed not only to be small and fast, but also to move heat effectively. There is no reason that this technique is not applicable to just about any molecule."

Key to the discovery was the collaboration between the faculty members of both institutions of higher learning. A research concept developed at Scranton was put in practice using an advanced laser technology called IR Raman Spectroscopy at the University of Illinois. The laser measures the behavior of molecules in nanometer size spaces.

Included among the research scientist authors is Timothy D. Sechler, an undergraduate student at The University of Scranton’s Dexter Hanley College for adult students. "This project gave me the opportunity to see what my future would be like if I pursue a research track," said Mr. Sechler, a junior who now plans to pursue a Ph.D. in chemistry.

The research used vibrational spectroscopy with picosecond time resolution to monitor the flow of energy across surfactant molecules that separate droplets of confined water from a nonpolar liquid phase. Their research shows that the surfactant layer must be analyzed in terms of its vibrational couplings, rather than by ordinary heat conduction. Their research provided the first detail of the precise pathways for interfacial vibrational energy in both time and space resolution.

The paper, entitled "Vibrational energy transfer across a reverse micelle surfactant layer," will be published in the October 15 issue of Science, the prestigious journal of the American Association for the Advancement of Science, and on the Science Express Web site on Sept. 23, 2004.

Stan Zygmunt | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>