Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groundbreaking research could ignite new solutions to heat transfer in nano-devices

24.09.2004


For the first time, an innovative research technique successfully completed a detailed measurement of how heat energy is created at the molecular level, an approach that could have far reaching implications for developing nano-devices.



Research results to be published in the upcoming issue of Science, detail a collaborative effort involving The University of Scranton, a Jesuit university in Pennsylvania, and the University of Illinois at Urbana-Champaign, a research institution in Illinois. "This is the first time that anyone has measured how a specific motion of a molecule on one side of a molecular wall causes molecules within the wall to move," said John Deak, Ph.D., assistant professor of chemistry at The University of Scranton. "In nanotechnology, researchers design materials whose properties originate in clusters of molecules on the nanometer level. This research can be used to help us better understand how molecules interact on these dimensions."

The faculty and students involved were Dr. Deak and his undergraduate student Timothy Sechler; and University of Illinois chemistry professor Dana Dlott, Ph.D., Yoonsoo Pang, graduate assistant, and Zhaohui Wang, post-doctoral research associate. "The experiment detailed the pathways for energy transfer and also provided the tools to study other molecules," said Dr. Dlott. "In designing nanoscale devices, the shapes of the molecules must be designed not only to be small and fast, but also to move heat effectively. There is no reason that this technique is not applicable to just about any molecule."


Key to the discovery was the collaboration between the faculty members of both institutions of higher learning. A research concept developed at Scranton was put in practice using an advanced laser technology called IR Raman Spectroscopy at the University of Illinois. The laser measures the behavior of molecules in nanometer size spaces.

Included among the research scientist authors is Timothy D. Sechler, an undergraduate student at The University of Scranton’s Dexter Hanley College for adult students. "This project gave me the opportunity to see what my future would be like if I pursue a research track," said Mr. Sechler, a junior who now plans to pursue a Ph.D. in chemistry.

The research used vibrational spectroscopy with picosecond time resolution to monitor the flow of energy across surfactant molecules that separate droplets of confined water from a nonpolar liquid phase. Their research shows that the surfactant layer must be analyzed in terms of its vibrational couplings, rather than by ordinary heat conduction. Their research provided the first detail of the precise pathways for interfacial vibrational energy in both time and space resolution.

The paper, entitled "Vibrational energy transfer across a reverse micelle surfactant layer," will be published in the October 15 issue of Science, the prestigious journal of the American Association for the Advancement of Science, and on the Science Express Web site on Sept. 23, 2004.

Stan Zygmunt | EurekAlert!
Further information:
http://www.scranton.edu

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>