Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wastewater could treat itself, power city


U of T research offers hope for environment

The energy stored in Toronto’s municipal wastewater could be harnessed to run water treatment facilities and contribute power to the city grid, says new U of T research. The study, published in the August issue of the Journal of Energy Engineering, is the first to measure the energy content of the raw municipal wastewater in the Ashbridges Bay, North Toronto, Highland Creek and Humber plants. The research revealed that the wastewater contained enough organic material to potentially produce 113 megawatts of electricity or close to 990 million kilowatt hours a year.

"With a 20 per cent recovery of that potential energy into electricity, the wastewater treatment plants could produce enough electricity for their own operation," says civil engineering professor David Bagley, who conducted the research with lead author and PhD candidate Ioannis Shizas. "Any recovery of potential energy above that can be returned to the grid."

Bagley and Shizas used bomb calorimetry, a technique that measures the heat content of materials, to determine the amount of energy stored in wastewater’s organic matter. The city plants currently use aerobic treatment, a process by which microbes decompose organic matter in the presence of oxygen. By using anaerobic digestion instead, in which microbes decompose matter without oxygen, the process’ byproduct of biogas - methane-rich gas with an energy content approximately 75 per cent that of natural gas - could become a valuable energy source in the future.

"We’re moving towards a future where we see our wastewaters and other wastes as resources," says Bagley. "If electricity costs go up, like they have in places like California, this could be a cost-effective and renewable energy source."

Prof. David Bagley | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>