Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless nanocrystals efficiently radiate visible light

23.06.2004


Marriage of quantum well, quantum dots could produce white light

A wireless nanodevice that functions like a fluorescent light - but potentially far more efficiently - has been developed in a joint project between the National Nuclear Security Administration’s Los Alamos and Sandia national laboratories.
The experimental success, reported in the June 10 issue of Nature, efficiently causes nanocrystals to emit light when placed on top of a nearby energy source, eliminating the need to put wires directly on the nanocrystals.


The energy source is a so-called quantum well that emits energy at wavelengths most easily absorbable by the nanocrystals.

The efficiency of the energy transfer from the quantum well to the nanocrystals was approximately 55 percent - although in theory nearly 100 percent transfer of the energy is possible and might be achieved with further tweaking.

The work is another step in creating more efficient white-light-emitting diodes - semiconductor-based structures more efficient and hardier than the common tungsten light bulb.

Reduction of lighting costs is of wide interest because on a world scale, lighting uses more electrical energy per year than any other human invention.

Nanocrystals pumped by quantum wells generate light in a process similar to the light generation in a fluorescent light bulb.

There, a captive gas permeated by electricity emits ultraviolet light that strikes the phosphor-coated surface of the bulb, causing the coat to emit its familiar, overly white fluorescent light.

The current work shows that the nanocrystals can be pumped very efficiently by a peculiar kind of energy transfer that does not require radiation in the usual sense. The process is so efficient, reports Los Alamos National Laboratory (LANL) researcher Marc Achermann, because unlike the fluorescent bulb, which must radiate its ultraviolet energy to the phosphor, the quantum well delivers its ultraviolet energy to the nanocrystal very rapidly before radiation occurs.

Because the emissions of nanocrystals (a.k.a. quantum dots) can be varied merely by controlling the size of the dot rather than by the standard, cumbersome process of varying the mix of materials, no known theoretical or practical barriers exist to pumping different-sized quantum dots that could individually emit blue, green, or red light, or be combined to generate white light.

The quantum well, about three nanometers thick, is composed of a dozen atomic layers. It coats a wafer two inches in diameter and is composed of indium gallium nitride. The film is not fabricated but rather grown as crystal, with an energy gap between its different layers that emits energy in the ultraviolet range at approximately 400 nm.

In this proof-of-principle work, the energy in the quantum well was delivered with a laser. Although the difficulties of inserting energy into the quantum well using an electrical connection rather than laser light are significant, it is considered to be feasible.

The thin-film quantum well crystal film was grown at Sandia by chemist Daniel Koleske.

"My role was small," jokes Daniel, "but they couldn’t have done it without me."

Sandia researchers are reputed to be among the finest epitaxial crystal-growers in the world.

LANL researchers Achermann, Melissa Petruska, Simon Kos, Darryl Smith, and Victor Klimov attached the semiconductor nanocrystals, made the measurements, and created the theory.

Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>