Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snezhinsk breakthrough

19.01.2004


The first Russian power system based on a solid-oxide fuel cell is tested in Snezhinsk. By importance, this event is comparable with the first automobile construction.



The first Russian power system based on a solid-oxide fuel cell had been tested in the All-Russia Research Institute of Technical Physics (Russian Federal Nuclear Center, Snezhinsk, Chelyabinsk oblast). In this system, hydrogen is obtained from natural gas, and oxygen - from the air. For the first time, such a system has been built up of units (air pump, reformer, and fuel cell) that all are made in Russia at factories of the Ministry of Atomic Energy (Minatom). Almost ten-year-long work of Minatom specialists on creating the solid-oxide fuel cell has been successful. The testing team has acknowledged an important financial support of the ISTC that helped to solve key technical problems.

Viktor Emel’yanov, co-coordinator of the ISTC fuel cell construction initiative, has reported the following. The scientists launched an experimental system, which was operated several days and then turned off. But the main goal was attained: it has been revealed, which units are to be modified and how. The resource of the energy system functioning has been estimated in pilot experiments with separate fuel cells at 50 thousands of hours. Though the coast hasn’t been evaluated yet, it is expected to be acceptable. This event is comparable by importance with the first automobile construction. The experimental system power is 1 kW. This makes us sure that building 2.5 kW system under the ISTC project can be successfully accomplished.


Fuel cells and power systems on their basis are the key elements of hydrogen energetic, which is a promising way to reduce the consumption of fossil fuels and also to reduce or stop the air pollution by exhaust gases of vehicles and power industries. Hydrogen energetic in Russia is promoted by the alliance of Minaton, ISTC, and Gazprom under aforementioned project, plus the Norilsk Nickel Company and Russian Academy of Sciences under the complex program of research and experimental-construction works on hydrogen energetic and fuel cells signed in December of 2003.

A fuel cell creates electricity through an electrochemical process that combines hydrogen and oxygen. For this purpose, hydrogen atoms are driven to the hydrogen electrode, turned to ions, and transferred by an electrolyte to the oxygen electrode, where they join up with oxygen atoms to form water and leave the fuel cell. There are several kinds of electrolytes that determine the construction of a fuel cell and respective power system.

A solid-oxide fuel cell is a high-temperature fuel cell having an operating temperature of more than 800 degrees. At room temperature, this electrolyte does not conduct any ions. It is unsuitable for an automobile, but quite appropriate for generating electricity and heat for a severed cottage or supplementary equipment of transport means. The main advantage of this fuel cell is its adjustability to hydrocarbon fuels, primarily, natural gas. The decomposition of natural gas to hydrogen and carbon monoxide and dioxide results in the production of synthesis gas. Here carbon monoxide can serve as a fuel along with hydrogen due to the presence of oxygen anions in the electrolyte. But it would be a poison in alternative low-temperature fuel cells, where the electrolyte conducts hydrogen ions (protons). Solid-oxide fuel cells produce not only electricity, but also heat that can be used in heating of buildings as well as generating an additional power supply, e.g., with the use of gas or vapour turbine.

Solid-oxide electrolyte is usually made of zirconium oxide substances with the addition of alkaline-earth and rare-earth metals. There are two ways of obtaining electricity with the use of solid-oxide fuel cells, one of which is based on a tubular construction developed in Snezhinsk. That fuel cell consists of many modules. Each module is a tube about 1 cm in diameter and 25 cm long, consisting of the same material as the electrolyte, i.e., zirconium oxide, in which the electrodes are implanted: the hydrogen one is made up of nickel and zirconium oxide, and the oxygen one of lanthanum-strontium manganate. The tube is filled up with a porous insulator, in which a smaller metal tube is incorporated. By this tube synthesis gas is supplied to the fuel cell, and the electricity exits the fuel cell. A tube can be made also from the material of cathode. In this case, it is clad in electrolyte 20-30 cm thick, which is covered by the anode layer. Such a tube having the power density 550 mW/sq cm at the temperature of 950 degrees can produce the electric current of 0.55 V and 13 W. And these values do not change during 1.5 thousand hours of the operation test that has been conducted by the scientists.

An alternative idea is a planar fuel cell. In this case, the base is made of either a half-millimetre-thick plate of the same electrolyte carrying micron-deep layers of porous cathode and anode made of above-mentioned materials, or of a millimetre-thick anode plate with electrolyte and cathode layers. Such a plate up to 60 mm in diameter made of nickel/zirconium oxide with adjustable porosity and conductivity can be produced, for example, in the Institute of Physics and Power Engineering in Obninsk. That is commented by one of the members of the research team, N.I. Khramushin, as follows. The planar construction is more efficient and compact than the tubular one. Its use allows for obtaining a higher electric power density and decreasing power and heat losses. We have managed to obtain a maximal power density of 700 mW/sq cm at 950 degrees. Therefore, power systems based on such fuel cells will cost lower than tubular ones - the price for one kilowatt of power may drop to 400 dollars in case of a massive production.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>