Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny nanotube antennas may yield better signals in cell phones, televisions

30.12.2003


In the future, your cell phone calls and television pictures could become a lot clearer thanks to tiny antennas thousands of times smaller than the width of a human hair. At least that’s the speculation of a University of Southern California researcher who has been investigating nanotube transistors.



The USC scientist, Bart Kosko, Ph.D., a professor in the school’s Electrical Engineering Department, led a study that has demonstrated for the first time that minuscule antennas, in the form of carbon nanotube transistors, can dramatically enhance the processing of electrical signals, a development that could pave the way for improved performance of consumer electronic devices.

The finding adds to a growing number of promising electronic components that are nanotube-based, including logic gates for computers and diodes for light displays. The study appears in the December issue of Nano Letters, a monthly peer-reviewed publication of the American Chemical Society, the world’s largest scientific society.


"No one knows exactly how these little tubes work or even if they will work out in manufacturing, but they are surprisingly good at detecting electrical signals," says Kosko. "Once we figure out all the parameters that are needed to fine tune them, both physically and chemically, we hope to turn these tubes into powerful little antennas."

If all goes well, the tubes could start appearing in consumer products within five to ten years, he predicts.

The finding hinges on a well-known but counterintuitive theory called "stochastic resonance" that claims noise, or unwanted signals, can actually improve the detection of faint electrical signals. Kosko set out to show that the theory was applicable at the nano scale.

Under controlled laboratory conditions, Kosko’s graduate student, Ian Lee, generated a sequence of faint electrical signals ranging from weak to strong. In combination with noise, the faint signals were then exposed to devices with and without carbon nanotubes. The signals were significantly enhanced in the container with the nanotubes compared to those without nanotubes, Kosko says.

Although much testing needs to be conducted before the structures are proven to be of practical use, Kosko sees big potential for the little tubes. He says they show promise for improving "spread spectrum" technology, a signal processing technique used in many newer phones that allows listeners to switch to different channels for clearer signals and to prevent others from eavesdropping.

Arrays of the tiny tubes could also process image pixel data, leading to improved television images, including flat-panel displays, according to Kosko. The tubes also have the potential to speed up Internet connections, the researcher says.

In a more futuristic application, Kosko believes the tubes have the potential to act as artificial nerve cells, which could help enhance sensation and movement to damaged nerves and limbs. The sensors might even be used as electrical components in artificial limbs, he adds.

By adjusting the shape, length and chemical composition of the nanotubes, as well as the size of the tube array, they can in essence be customized for a wide-variety of electronic needs, Kosko predicts. "There are likely many good applications for the technology that we have not foreseen."

Funding for this study was provided by the National Science Foundation.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>