Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny nanotube antennas may yield better signals in cell phones, televisions

30.12.2003


In the future, your cell phone calls and television pictures could become a lot clearer thanks to tiny antennas thousands of times smaller than the width of a human hair. At least that’s the speculation of a University of Southern California researcher who has been investigating nanotube transistors.



The USC scientist, Bart Kosko, Ph.D., a professor in the school’s Electrical Engineering Department, led a study that has demonstrated for the first time that minuscule antennas, in the form of carbon nanotube transistors, can dramatically enhance the processing of electrical signals, a development that could pave the way for improved performance of consumer electronic devices.

The finding adds to a growing number of promising electronic components that are nanotube-based, including logic gates for computers and diodes for light displays. The study appears in the December issue of Nano Letters, a monthly peer-reviewed publication of the American Chemical Society, the world’s largest scientific society.


"No one knows exactly how these little tubes work or even if they will work out in manufacturing, but they are surprisingly good at detecting electrical signals," says Kosko. "Once we figure out all the parameters that are needed to fine tune them, both physically and chemically, we hope to turn these tubes into powerful little antennas."

If all goes well, the tubes could start appearing in consumer products within five to ten years, he predicts.

The finding hinges on a well-known but counterintuitive theory called "stochastic resonance" that claims noise, or unwanted signals, can actually improve the detection of faint electrical signals. Kosko set out to show that the theory was applicable at the nano scale.

Under controlled laboratory conditions, Kosko’s graduate student, Ian Lee, generated a sequence of faint electrical signals ranging from weak to strong. In combination with noise, the faint signals were then exposed to devices with and without carbon nanotubes. The signals were significantly enhanced in the container with the nanotubes compared to those without nanotubes, Kosko says.

Although much testing needs to be conducted before the structures are proven to be of practical use, Kosko sees big potential for the little tubes. He says they show promise for improving "spread spectrum" technology, a signal processing technique used in many newer phones that allows listeners to switch to different channels for clearer signals and to prevent others from eavesdropping.

Arrays of the tiny tubes could also process image pixel data, leading to improved television images, including flat-panel displays, according to Kosko. The tubes also have the potential to speed up Internet connections, the researcher says.

In a more futuristic application, Kosko believes the tubes have the potential to act as artificial nerve cells, which could help enhance sensation and movement to damaged nerves and limbs. The sensors might even be used as electrical components in artificial limbs, he adds.

By adjusting the shape, length and chemical composition of the nanotubes, as well as the size of the tube array, they can in essence be customized for a wide-variety of electronic needs, Kosko predicts. "There are likely many good applications for the technology that we have not foreseen."

Funding for this study was provided by the National Science Foundation.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>