Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny nanotube antennas may yield better signals in cell phones, televisions

30.12.2003


In the future, your cell phone calls and television pictures could become a lot clearer thanks to tiny antennas thousands of times smaller than the width of a human hair. At least that’s the speculation of a University of Southern California researcher who has been investigating nanotube transistors.



The USC scientist, Bart Kosko, Ph.D., a professor in the school’s Electrical Engineering Department, led a study that has demonstrated for the first time that minuscule antennas, in the form of carbon nanotube transistors, can dramatically enhance the processing of electrical signals, a development that could pave the way for improved performance of consumer electronic devices.

The finding adds to a growing number of promising electronic components that are nanotube-based, including logic gates for computers and diodes for light displays. The study appears in the December issue of Nano Letters, a monthly peer-reviewed publication of the American Chemical Society, the world’s largest scientific society.


"No one knows exactly how these little tubes work or even if they will work out in manufacturing, but they are surprisingly good at detecting electrical signals," says Kosko. "Once we figure out all the parameters that are needed to fine tune them, both physically and chemically, we hope to turn these tubes into powerful little antennas."

If all goes well, the tubes could start appearing in consumer products within five to ten years, he predicts.

The finding hinges on a well-known but counterintuitive theory called "stochastic resonance" that claims noise, or unwanted signals, can actually improve the detection of faint electrical signals. Kosko set out to show that the theory was applicable at the nano scale.

Under controlled laboratory conditions, Kosko’s graduate student, Ian Lee, generated a sequence of faint electrical signals ranging from weak to strong. In combination with noise, the faint signals were then exposed to devices with and without carbon nanotubes. The signals were significantly enhanced in the container with the nanotubes compared to those without nanotubes, Kosko says.

Although much testing needs to be conducted before the structures are proven to be of practical use, Kosko sees big potential for the little tubes. He says they show promise for improving "spread spectrum" technology, a signal processing technique used in many newer phones that allows listeners to switch to different channels for clearer signals and to prevent others from eavesdropping.

Arrays of the tiny tubes could also process image pixel data, leading to improved television images, including flat-panel displays, according to Kosko. The tubes also have the potential to speed up Internet connections, the researcher says.

In a more futuristic application, Kosko believes the tubes have the potential to act as artificial nerve cells, which could help enhance sensation and movement to damaged nerves and limbs. The sensors might even be used as electrical components in artificial limbs, he adds.

By adjusting the shape, length and chemical composition of the nanotubes, as well as the size of the tube array, they can in essence be customized for a wide-variety of electronic needs, Kosko predicts. "There are likely many good applications for the technology that we have not foreseen."

Funding for this study was provided by the National Science Foundation.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>