Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bad Mileage: 98 tons of plants per gallon

27.10.2003


Study shows vast amounts of ’buried sunshine’ needed to fuel society



A staggering 98 tons of prehistoric, buried plant material – that’s 196,000 pounds – is required to produce each gallon of gasoline we burn in our cars, SUVs, trucks and other vehicles, according to a study conducted at the University of Utah.

"Can you imagine loading 40 acres worth of wheat – stalks, roots and all – into the tank of your car or SUV every 20 miles?" asks ecologist Jeff Dukes, whose study will be published in the November issue of the journal Climatic Change.


But that’s how much ancient plant matter had to be buried millions of years ago and converted by pressure, heat and time into oil to produce one gallon of gas, Dukes concluded.

Dukes also calculated that the amount of fossil fuel burned in a single year – 1997 was used in the study – totals 97 million billion pounds of carbon, which is equivalent to more than 400 times "all the plant matter that grows in the world in a year," including vast amounts of microscopic plant life in the oceans.

"Every day, people are using the fossil fuel equivalent of all the plant matter that grows on land and in the oceans over the course of a whole year," he adds.

In another calcultation, Dukes determined that "the amount of plants that went into the fossil fuels we burned since the Industrial Revolution began [in 1751] is equal to all the plants grown on Earth over 13,300 years."

Explaining why he conducted the study, Dukes wrote: "Fossil fuel consumption is widely recognized as unsustainable. However, there has been no attempt to calculate the amount of energy that was required to generate fossil fuels, (one way to quantify the ’unsustainability’ of societal energy use)."

The study is titled "Burning Buried Sunshine: Human Consumption of Ancient Solar Energy." In it, Dukes conducted numerous calculations to determine how much plant matter buried millions of years ago was required to produce the oil, natural gas and coal consumed by modern society, which obtains 83 percent of its energy needs from fossil fuels.

"Fossil fuels developed from ancient deposits of organic material, and thus can be thought of as a vast store of solar energy" that was converted into plant matter by photosynthesis, he explains. "Using published biological, geochemical and industrial data, I estimated the amount of photosynthetically fixed and stored [by ancient plants] carbon that was required to form the coal, oil and gas that we are burning today."

Dukes conducted the study while working as a postdoctoral fellow in biology at the University of Utah. He now works for the Carnegie Institution of Washington’s Department of Global Ecology on the campus of Stanford University in California.

How the calculations were done

To determine how much ancient plant matter it took to eventually produce modern fossil fuels, Dukes calculated how much of the carbon in the original vegetation was lost during each stage of the multiple-step processes that create oil, gas and coal.

He looked at the proportion of fossil fuel reserves derived from different ancient environments: coal that formed when ancient plants rotted in peat swamps; oil from tiny floating plants called phytoplankton that were deposited on ancient seafloors, river deltas and lakebeds; and natural gas from those and other prehistoric environments. Then he examined the efficiency at which prehistoric plants were converted by heat, pressure and time into peat or other carbon-rich sediments.

Next, Dukes analyzed the efficiency with which carbon-rich sediments were converted to coal, oil and natural gas. Then he studied the efficiency of extracting such deposits. During each of the above steps, he based his calculations on previously published studies.

The calculations showed that roughly one-eleventh of the carbon in the plants deposited in peat bogs ends up as coal, and that only one-10,750th of the carbon in plants deposited on ancient seafloors, deltas and lakebeds ends up as oil and natural gas.

Dukes then used these "recovery factors" to estimate how much ancient plant matter was needed to produce a given amount of fossil fuel. Dukes considers his calculations good estimates based on available data, but says that because fossil fuels were formed under a wide range of environmental conditions, each estimate is subject to a wide range of uncertainty.



Dukes calculated ancient plant matter needed for a gallon of gasoline in metric units:

One gallon of oil weighs 3.26 kilograms. A gallon of oil produces up to 0.67 gallons of gasoline. So 3.26 kilograms for a gallon of oil divided by 0.67 gallons means that at least 4.87 kilograms of oil are needed to make a gallon of gasoline.

Oil is 85 percent carbon, so 0.85 times 4.87 kilograms equals 4.14 kilograms of carbon in the oil used to make a gallon of gasoline.

Since only about one-10,750th of the original carbon in ancient plant material actually ends up as oil, multiply 4.14 kilograms by 10,750 to get roughly 44,500 kilograms of carbon in ancient plant matter to make a gallon of gas.

About half of plant matter is carbon, so double the 44,500 kilograms to get 89,000 kilograms – or 89 metric tons – of ancient plant matter to make a gallon of gas. In U.S. units, that is equal to a bit more than 196,000 pounds or 98 tons.
Dukes made similar calculations for oil, natural gas and coal to determine that it took 44 million billion kilograms (97 million billion pounds) of carbon in ancient plant matter to produce all the fossil fuel used in 1997. That includes 29 million billion kilograms of prehistoric plants to produce a year’s worth of oil (including gasoline), almost 15 million billion kilograms of buried plant matter to make all the natural gas used in 1997, and 27,000 billion kilograms of dead plants to produce all the coal used in the same year.

"It took an incredible amount of plant matter to generate the fossil fuels we are using today," says Dukes. "The new contribution of this research is to enable us to picture just how inefficient and unsustainable fossil fuels are – inefficient in terms of the conversion of the original solar energy to fossil fuels. Fortunately, it is much more efficient to use modern energy sources like wind and solar. As the reasons keep piling up to switch away from fossil fuels, it is important that we develop these modern power sources as quickly as possible."

What about modern plant biomass?

Unlike the inefficiency of converting ancient plants to oil, natural gas and coal, modern plant "biomass" can provide energy more efficiently, either by burning it or converting into fuels like ethanol. So Dukes analyzed how much modern plant matter it would take to replace society’s current consumption of fossil fuels.

He began with a United Nations estimate that the total energy content of all coal, oil and natural gas used worldwide in 1997 equaled 315,271 million billion joules (a unit of energy). He divided that by the typical value of heat produced when wood is burned: 20,000 joules per gram of dry wood. The result is that fossil fuel consumption in 1997 equaled the energy in 15.8 trillion kilograms of wood. Dukes multiplied that by 45 percent – the proportion of carbon in plant material – to calculate that fossil fuel consumption in 1997 equaled the energy in 7.1 trillion kilograms of carbon in plant matter.

Studies have estimated that all land plants today contain 56.4 trillion kilograms of carbon, but only 56 percent of that is above ground and could be harvested. So excluding roots, land plants thus contain 56 percent times 56.4, or 31.6 trillion kilograms of carbon.

Dukes then divided the 1997 fossil fuel use equivalent of 7.1 trillion kilograms of carbon in plant matter by 31.6 trillion kilograms now available in plants. He found we would need to harvest 22 percent of all land plants just to equal the fossil fuel energy used in 1997 – about a 50 percent increase over the amount of plants now removed or paved over each year.

"Relying totally on biomass for our power – using crop residues and quick-growing forests as fuel sources – would force us to dedicate a huge part of the landscape to growing these fuels," Dukes says. "It would have major environmental consequences. We would have to choose between our rain forests and our vehicles and appliances. Biomass burning can be part of the solution if we use agricultural wastes, but other technologies have to be a major part of the solution as well – things like wind and solar power."


University of Utah Public Relations
201 S Presidents Circle, Room 308
Salt Lake City, Utah 84112-9017
(801) 581-6773 fax: 585-3350

Lee Siegel | EurekAlert!
Further information:
http://www.utah.edu/unews

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>