Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using ions to probe ionic liquids

12.09.2003


Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory are using a very small and light ion, the electron, to study the structure and dynamics of ionic liquids and how those properties influence chemical reactivity.



Ionic liquids are made of positive and negative ions that pack so poorly together that they are liquids near room temperature. They offer extremely low volatility, non-flammability, new reactivity patterns, and the formation of separate phases that allow the easy separation of products -- properties that make them safer to work with, easier to recycle, and less likely to pollute the atmosphere than traditional solvents.

Brookhaven chemist James Wishart and postdoctoral research associate Alison Funston use pulsed electron beams to initiate chemical reactions in ionic liquids, causing some of the ions to give up one of their own electrons. The isolated electrons can exist for hundreds of nanoseconds surrounded by solvent. Systematic variation of ionic liquid composition shows that solvated electron absorption spectra depend strongly on the structure of the ionic liquid and on the presence of functional groups such as hydroxyl groups.


While it takes only a few nanoseconds for electrons to become fully equilibrated (solvated) in ionic liquids, that is one thousand times slower than in most conventional solvents. During that time, the pre-solvated electrons are highly susceptible to capture by low concentrations of dissolved compounds. This can result in unanticipated reactivity patterns that have profound implications for uses of ionic liquids in radiation-filled environments such as the nuclear fuel cycle.

Wishart and Funston use electron scavengers to probe this reactivity and they measure ionic liquid solvation dynamics by following the laser-induced fluorescence of dye molecules that are sensitive to their surroundings. Viscosity is a key factor in all this work, and they have designed new, lower-viscosity ionic liquids to aid these studies.

To learn more, see Funston’s poster on Wednesday, Sept. 10, 2003, at 7:30 p.m. (PHYS 372), or hear her talk during the "Ionic Liquids: Progress and Prospects" session on Thursday, Sept. 11, at 2:50 p.m. (IEC 196), both at the Jacob Javits Convention Center. This work was funded by the Division of Chemical Sciences, Office of Basic Energy Sciences at DOE’s Office of Science, and by Brookhaven’s Laboratory Directed Research and Development Program.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>