Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Using ions to probe ionic liquids


Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory are using a very small and light ion, the electron, to study the structure and dynamics of ionic liquids and how those properties influence chemical reactivity.

Ionic liquids are made of positive and negative ions that pack so poorly together that they are liquids near room temperature. They offer extremely low volatility, non-flammability, new reactivity patterns, and the formation of separate phases that allow the easy separation of products -- properties that make them safer to work with, easier to recycle, and less likely to pollute the atmosphere than traditional solvents.

Brookhaven chemist James Wishart and postdoctoral research associate Alison Funston use pulsed electron beams to initiate chemical reactions in ionic liquids, causing some of the ions to give up one of their own electrons. The isolated electrons can exist for hundreds of nanoseconds surrounded by solvent. Systematic variation of ionic liquid composition shows that solvated electron absorption spectra depend strongly on the structure of the ionic liquid and on the presence of functional groups such as hydroxyl groups.

While it takes only a few nanoseconds for electrons to become fully equilibrated (solvated) in ionic liquids, that is one thousand times slower than in most conventional solvents. During that time, the pre-solvated electrons are highly susceptible to capture by low concentrations of dissolved compounds. This can result in unanticipated reactivity patterns that have profound implications for uses of ionic liquids in radiation-filled environments such as the nuclear fuel cycle.

Wishart and Funston use electron scavengers to probe this reactivity and they measure ionic liquid solvation dynamics by following the laser-induced fluorescence of dye molecules that are sensitive to their surroundings. Viscosity is a key factor in all this work, and they have designed new, lower-viscosity ionic liquids to aid these studies.

To learn more, see Funston’s poster on Wednesday, Sept. 10, 2003, at 7:30 p.m. (PHYS 372), or hear her talk during the "Ionic Liquids: Progress and Prospects" session on Thursday, Sept. 11, at 2:50 p.m. (IEC 196), both at the Jacob Javits Convention Center. This work was funded by the Division of Chemical Sciences, Office of Basic Energy Sciences at DOE’s Office of Science, and by Brookhaven’s Laboratory Directed Research and Development Program.

Karen McNulty Walsh | EurekAlert!
Further information:

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>