Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using ions to probe ionic liquids

12.09.2003


Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory are using a very small and light ion, the electron, to study the structure and dynamics of ionic liquids and how those properties influence chemical reactivity.



Ionic liquids are made of positive and negative ions that pack so poorly together that they are liquids near room temperature. They offer extremely low volatility, non-flammability, new reactivity patterns, and the formation of separate phases that allow the easy separation of products -- properties that make them safer to work with, easier to recycle, and less likely to pollute the atmosphere than traditional solvents.

Brookhaven chemist James Wishart and postdoctoral research associate Alison Funston use pulsed electron beams to initiate chemical reactions in ionic liquids, causing some of the ions to give up one of their own electrons. The isolated electrons can exist for hundreds of nanoseconds surrounded by solvent. Systematic variation of ionic liquid composition shows that solvated electron absorption spectra depend strongly on the structure of the ionic liquid and on the presence of functional groups such as hydroxyl groups.


While it takes only a few nanoseconds for electrons to become fully equilibrated (solvated) in ionic liquids, that is one thousand times slower than in most conventional solvents. During that time, the pre-solvated electrons are highly susceptible to capture by low concentrations of dissolved compounds. This can result in unanticipated reactivity patterns that have profound implications for uses of ionic liquids in radiation-filled environments such as the nuclear fuel cycle.

Wishart and Funston use electron scavengers to probe this reactivity and they measure ionic liquid solvation dynamics by following the laser-induced fluorescence of dye molecules that are sensitive to their surroundings. Viscosity is a key factor in all this work, and they have designed new, lower-viscosity ionic liquids to aid these studies.

To learn more, see Funston’s poster on Wednesday, Sept. 10, 2003, at 7:30 p.m. (PHYS 372), or hear her talk during the "Ionic Liquids: Progress and Prospects" session on Thursday, Sept. 11, at 2:50 p.m. (IEC 196), both at the Jacob Javits Convention Center. This work was funded by the Division of Chemical Sciences, Office of Basic Energy Sciences at DOE’s Office of Science, and by Brookhaven’s Laboratory Directed Research and Development Program.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>