Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using ions to probe ionic liquids

12.09.2003


Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory are using a very small and light ion, the electron, to study the structure and dynamics of ionic liquids and how those properties influence chemical reactivity.



Ionic liquids are made of positive and negative ions that pack so poorly together that they are liquids near room temperature. They offer extremely low volatility, non-flammability, new reactivity patterns, and the formation of separate phases that allow the easy separation of products -- properties that make them safer to work with, easier to recycle, and less likely to pollute the atmosphere than traditional solvents.

Brookhaven chemist James Wishart and postdoctoral research associate Alison Funston use pulsed electron beams to initiate chemical reactions in ionic liquids, causing some of the ions to give up one of their own electrons. The isolated electrons can exist for hundreds of nanoseconds surrounded by solvent. Systematic variation of ionic liquid composition shows that solvated electron absorption spectra depend strongly on the structure of the ionic liquid and on the presence of functional groups such as hydroxyl groups.


While it takes only a few nanoseconds for electrons to become fully equilibrated (solvated) in ionic liquids, that is one thousand times slower than in most conventional solvents. During that time, the pre-solvated electrons are highly susceptible to capture by low concentrations of dissolved compounds. This can result in unanticipated reactivity patterns that have profound implications for uses of ionic liquids in radiation-filled environments such as the nuclear fuel cycle.

Wishart and Funston use electron scavengers to probe this reactivity and they measure ionic liquid solvation dynamics by following the laser-induced fluorescence of dye molecules that are sensitive to their surroundings. Viscosity is a key factor in all this work, and they have designed new, lower-viscosity ionic liquids to aid these studies.

To learn more, see Funston’s poster on Wednesday, Sept. 10, 2003, at 7:30 p.m. (PHYS 372), or hear her talk during the "Ionic Liquids: Progress and Prospects" session on Thursday, Sept. 11, at 2:50 p.m. (IEC 196), both at the Jacob Javits Convention Center. This work was funded by the Division of Chemical Sciences, Office of Basic Energy Sciences at DOE’s Office of Science, and by Brookhaven’s Laboratory Directed Research and Development Program.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>