Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique could lead to widespread use of solar power

12.09.2003


Researchers envision mass-produced rolls of material that converts sunlight to electricity



Princeton electrical engineers have invented a technique for making solar cells that, when combined with other recent advances, could yield a highly economical source of energy.

The results, reported in the Sept. 11 issue of Nature, move scientists closer to making a new class of solar cells that are not as efficient as conventional ones, but could be vastly less expensive and more versatile. Solar cells, or photovoltaics, convert light to electricity and are used to power many devices, from calculators to satellites.


The new photovoltaics are made from "organic" materials, which consist of small carbon-containing molecules, as opposed to the conventional inorganic, silicon-based materials. The materials are ultra-thin and flexible and could be applied to large surfaces.

Organic solar cells could be manufactured in a process something like printing or spraying the materials onto a roll of plastic, said Peter Peumans, a graduate student in the lab of electrical engineering professor Stephen Forrest. "In the end, you would have a sheet of solar cells that you just unroll and put on a roof," he said.

Peumans and Forrest cowrote the paper in collaboration with Soichi Uchida, a researcher visiting Princeton from Nippon Oil Co.

The cells also could be made in different colors, making them attractive architectural elements, Peumans said. Or they could be transparent so they could be applied to windows. The cells would serve as tinting, letting half the light through and using the other half to generate power, he said.

Because of these qualities, researchers have pursued organic photovoltaic films for many years, but have been plagued with problems of efficiency, said Forrest. The first organic solar cell, developed in 1986, was 1 percent efficient -- that is, it converted only 1 percent of the available light energy into electrical energy. "And that number stood for about 15 years," said Forrest.

Forrest and colleagues recently broke that barrier by changing the organic compounds used to make their solar cells, yielding devices with efficiencies of more than 3 percent. The most recent advance reported in Nature involves a new method for forming the organic film, which increased the efficiency by 50 percent.

Researchers in Forrest’s lab are now planning to combine the new materials and techniques. Doing so could yield at least 5 percent efficiency, which would make the technology attractive to commercial manufacturers. With further commercial development, organic solar devices would be viable in the marketplace with 5 to 10 percent efficiency, the researchers estimated. "We think we have pathway for using this and other tricks to get to 10 percent reasonably quickly," Forrest said.

By comparison, conventional silicon chip-based solar cells are about 24 percent efficient. "Organic solar cells will be cheaper to make, so in the end the cost of a watt of electricity will be lower than that of conventional materials," said Peumans.

The technique the researchers discovered also opens new areas of materials science that could be applied to other types of technology, the researchers said. Solar cells are made of two types of materials sandwiched together, one that gives up electrons and another that attracts them, allowing a flow of electricity. The Princeton researchers figured out how to make those two materials mesh together like interlocking fingers so there is more opportunity for the electrons to transfer.

The key to this advance was to apply a metal cap to the film of material as it is being made. The cap allowed the surface of the material to stay smooth and uniform while the internal microstructure changed and meshed together, which was an unexpected result, said Forrest. The researchers then developed a mathematical model to explain the behavior, which will likely prove useful in creating other micromaterials, Forrest said.

"We’ve shown a very new and general process for reorganizing the morphology of materials and that was really unanticipated," Forrest said.



The research was supported by grants from the Air Force Office of Scientific Research, the National Renewable Energy Laboratory and the Global Photonic Energy Corp.

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu/

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>