Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique could lead to widespread use of solar power

12.09.2003


Researchers envision mass-produced rolls of material that converts sunlight to electricity



Princeton electrical engineers have invented a technique for making solar cells that, when combined with other recent advances, could yield a highly economical source of energy.

The results, reported in the Sept. 11 issue of Nature, move scientists closer to making a new class of solar cells that are not as efficient as conventional ones, but could be vastly less expensive and more versatile. Solar cells, or photovoltaics, convert light to electricity and are used to power many devices, from calculators to satellites.


The new photovoltaics are made from "organic" materials, which consist of small carbon-containing molecules, as opposed to the conventional inorganic, silicon-based materials. The materials are ultra-thin and flexible and could be applied to large surfaces.

Organic solar cells could be manufactured in a process something like printing or spraying the materials onto a roll of plastic, said Peter Peumans, a graduate student in the lab of electrical engineering professor Stephen Forrest. "In the end, you would have a sheet of solar cells that you just unroll and put on a roof," he said.

Peumans and Forrest cowrote the paper in collaboration with Soichi Uchida, a researcher visiting Princeton from Nippon Oil Co.

The cells also could be made in different colors, making them attractive architectural elements, Peumans said. Or they could be transparent so they could be applied to windows. The cells would serve as tinting, letting half the light through and using the other half to generate power, he said.

Because of these qualities, researchers have pursued organic photovoltaic films for many years, but have been plagued with problems of efficiency, said Forrest. The first organic solar cell, developed in 1986, was 1 percent efficient -- that is, it converted only 1 percent of the available light energy into electrical energy. "And that number stood for about 15 years," said Forrest.

Forrest and colleagues recently broke that barrier by changing the organic compounds used to make their solar cells, yielding devices with efficiencies of more than 3 percent. The most recent advance reported in Nature involves a new method for forming the organic film, which increased the efficiency by 50 percent.

Researchers in Forrest’s lab are now planning to combine the new materials and techniques. Doing so could yield at least 5 percent efficiency, which would make the technology attractive to commercial manufacturers. With further commercial development, organic solar devices would be viable in the marketplace with 5 to 10 percent efficiency, the researchers estimated. "We think we have pathway for using this and other tricks to get to 10 percent reasonably quickly," Forrest said.

By comparison, conventional silicon chip-based solar cells are about 24 percent efficient. "Organic solar cells will be cheaper to make, so in the end the cost of a watt of electricity will be lower than that of conventional materials," said Peumans.

The technique the researchers discovered also opens new areas of materials science that could be applied to other types of technology, the researchers said. Solar cells are made of two types of materials sandwiched together, one that gives up electrons and another that attracts them, allowing a flow of electricity. The Princeton researchers figured out how to make those two materials mesh together like interlocking fingers so there is more opportunity for the electrons to transfer.

The key to this advance was to apply a metal cap to the film of material as it is being made. The cap allowed the surface of the material to stay smooth and uniform while the internal microstructure changed and meshed together, which was an unexpected result, said Forrest. The researchers then developed a mathematical model to explain the behavior, which will likely prove useful in creating other micromaterials, Forrest said.

"We’ve shown a very new and general process for reorganizing the morphology of materials and that was really unanticipated," Forrest said.



The research was supported by grants from the Air Force Office of Scientific Research, the National Renewable Energy Laboratory and the Global Photonic Energy Corp.

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu/

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
24.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>