Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen vehicle won’t be viable soon, study says

11.03.2003


Even with aggressive research, the hydrogen fuel-cell vehicle will not be better than the diesel hybrid (a vehicle powered by a conventional engine supplemented by an electric motor) in terms of total energy use and greenhouse gas emissions by 2020, says a study recently released by the Laboratory for Energy and the Environment (LFEE).



And while hybrid vehicles are already appearing on the roads, adoption of the hydrogen-based vehicle will require major infrastructure changes to make compressed hydrogen available. If we need to curb greenhouse gases within the next 20 years, improving mainstream gasoline and diesel engines and transmissions and expanding the use of hybrids is the way to go.

These results come from a systematic and comprehensive assessment of a variety of engine and fuel technologies as they are likely to be in 2020 with intense research but no real “breakthroughs.” The assessment was led by Malcolm A. Weiss, LFEE senior research staff member, and John B. Heywood, the Sun Jae Professor of Mechanical Engineering and director of MIT’s Laboratory for 21st-Century Energy.


Release of the study comes just a month after the Bush administration announced a billion-dollar initiative to develop commercially viable hydrogen fuel cells and a year after establishment of the government-industry program to develop the hydrogen fuel-cell-powered “FreedomCar.”

The new assessment is an extension of a study done in 2000, which likewise concluded that the much-touted hydrogen fuel cell was not a clear winner. This time, the MIT researchers used optimistic fuel-cell performance assumptions cited by some fuel-cell advocates, and the conclusion remained the same.

The hydrogen fuel-cell vehicle has low emissions and energy use on the road—but converting a hydrocarbon fuel such as natural gas or gasoline into hydrogen to fuel this vehicle uses substantial energy and emits greenhouse gases.

“Ignoring the emissions and energy use involved in making and delivering the fuel and manufacturing the vehicle gives a misleading impression,” said Weiss.

However, the researchers do not recommend stopping work on the hydrogen fuel cell. “If auto systems with significantly lower greenhouse gas emissions are required in, say, 30 to 50 years, hydrogen is the only major fuel option identified to date,” said Heywood. The hydrogen must, of course, be produced without making greenhouse gas emissions, hence from a non-carbon source such as solar energy or from conventional fuels while sequestering the carbon emissions.

The assessment highlights the advantages of the hybrid, a highly efficient approach that combines an engine (or a fuel cell) with a battery and an electric motor. Continuing to work on today’s gasoline engine and its fuel will bring major improvements by 2020, cutting energy use and emissions by a third compared to today’s vehicles. But aggressive research on a hybrid with a diesel engine could yield a 2020 vehicle that is twice as efficient and half as polluting as that “evolved” technology, and future gasoline engine hybrids will not be far behind, the study says.

Other researchers on the study were Andreas Schafer, principal research engineer in the Center for Technology, Policy and Industrial Development, and Vinod K. Natarajan (S.M. 2002). The new report and the original “On the Road in 2020” study from 2000 are available at http://lfee.mit.edu/publications under “Reports.”

Nancy Stauffer | MIT News Office
Further information:
http://web.mit.edu/newsoffice/tt/2003/mar05/hydrogen.html

More articles from Power and Electrical Engineering:

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

nachricht New nanofiber marks important step in next generation battery development
13.03.2017 | Georgia Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>