Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen vehicle won’t be viable soon, study says

11.03.2003


Even with aggressive research, the hydrogen fuel-cell vehicle will not be better than the diesel hybrid (a vehicle powered by a conventional engine supplemented by an electric motor) in terms of total energy use and greenhouse gas emissions by 2020, says a study recently released by the Laboratory for Energy and the Environment (LFEE).



And while hybrid vehicles are already appearing on the roads, adoption of the hydrogen-based vehicle will require major infrastructure changes to make compressed hydrogen available. If we need to curb greenhouse gases within the next 20 years, improving mainstream gasoline and diesel engines and transmissions and expanding the use of hybrids is the way to go.

These results come from a systematic and comprehensive assessment of a variety of engine and fuel technologies as they are likely to be in 2020 with intense research but no real “breakthroughs.” The assessment was led by Malcolm A. Weiss, LFEE senior research staff member, and John B. Heywood, the Sun Jae Professor of Mechanical Engineering and director of MIT’s Laboratory for 21st-Century Energy.


Release of the study comes just a month after the Bush administration announced a billion-dollar initiative to develop commercially viable hydrogen fuel cells and a year after establishment of the government-industry program to develop the hydrogen fuel-cell-powered “FreedomCar.”

The new assessment is an extension of a study done in 2000, which likewise concluded that the much-touted hydrogen fuel cell was not a clear winner. This time, the MIT researchers used optimistic fuel-cell performance assumptions cited by some fuel-cell advocates, and the conclusion remained the same.

The hydrogen fuel-cell vehicle has low emissions and energy use on the road—but converting a hydrocarbon fuel such as natural gas or gasoline into hydrogen to fuel this vehicle uses substantial energy and emits greenhouse gases.

“Ignoring the emissions and energy use involved in making and delivering the fuel and manufacturing the vehicle gives a misleading impression,” said Weiss.

However, the researchers do not recommend stopping work on the hydrogen fuel cell. “If auto systems with significantly lower greenhouse gas emissions are required in, say, 30 to 50 years, hydrogen is the only major fuel option identified to date,” said Heywood. The hydrogen must, of course, be produced without making greenhouse gas emissions, hence from a non-carbon source such as solar energy or from conventional fuels while sequestering the carbon emissions.

The assessment highlights the advantages of the hybrid, a highly efficient approach that combines an engine (or a fuel cell) with a battery and an electric motor. Continuing to work on today’s gasoline engine and its fuel will bring major improvements by 2020, cutting energy use and emissions by a third compared to today’s vehicles. But aggressive research on a hybrid with a diesel engine could yield a 2020 vehicle that is twice as efficient and half as polluting as that “evolved” technology, and future gasoline engine hybrids will not be far behind, the study says.

Other researchers on the study were Andreas Schafer, principal research engineer in the Center for Technology, Policy and Industrial Development, and Vinod K. Natarajan (S.M. 2002). The new report and the original “On the Road in 2020” study from 2000 are available at http://lfee.mit.edu/publications under “Reports.”

Nancy Stauffer | MIT News Office
Further information:
http://web.mit.edu/newsoffice/tt/2003/mar05/hydrogen.html

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>