Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology could use moon dust to capture sun power

08.10.2002


UH Solar Cell Research Has Applications for Space Exploration, Clean Cars


Alex Freundlich, right, research physics professor, and Charles Horton, senior research scientist at the Texas Center for Superconductivity and Advanced Materials at the University of Houston, have developed a high-efficiency, nano-engineered solar cell



New technologies designed to harness the power of the sun may hold the key to successful moon colonies, cheaper and lighter-weight satellites, and cleaner-burning, more efficient car engines.

Solar cells, electronic devices that convert sunlight into useful electricity, would be an important resource for powering future industrial bases or colonies on the moon. Alex Freundlich, research professor of physics, and Charles Horton, senior research scientist at the Texas Center for Superconductivity and Advanced Materials at UH, or TcSAM, are developing methods to manufacture huge solar cell arrays on the moon using materials from the lunar soil.


“The raw materials needed to make solar cells are present in the moon’s regolith,” says Freundlich, who has examined lunar material to determine whether it contains the necessary ingredients for making solar cells. He, Horton, Alex Ignatiev, director of TcSAM, and a team of NASA-JSC and industry scientists also have used “simulated” moon soil to determine how to go about manufacturing the solar cell devices on the moon.

The UH scientists will present talks on three solar cell research projects during the World Space Congress 2002 Oct. 10-19 in Houston.

“Our plan is to use an autonomous lunar rover to move across the moon’s surface, to melt the regolith into a very thin film of glass and then to deposit thin film solar cells on that lunar glass substrate. An array of such lunar solar cells could then be used as a giant solar energy converter generating electricity,” Freundlich says. “These solar cells would have lower efficiencies compared to devices currently used on Earth, but by using such a large surface area, we could eventually generate enough electricity to supply a lunar base, support lunar manufacturing or colonies.”

Another possible use for a lunar solar power system would be to generate electricity to beam back to the Earth for use in local electric grids. UH physicist David Criswell has spent 20 years developing such a plan.

Freundlich and Horton also are developing solar cells that are more efficient at converting sunlight to electricity than those currently used to power orbiting satellites. The materials used in their advanced solar cells, and the way those materials are configured, also make them more resistant to the damaging effects of radiation.

“The best space solar cell technology currently in use converts only about 28 percent of the sunlight hitting the device into electricity,” Freundlich says. “By adding a thin layer of nano-engineered material in these cells we are capable of boosting solar cell efficiencies to well above 35 percent. These cells potentially would last much longer because they are much more resistant to being degraded by radiation from the sun and space.”

One of the most radiation-laden areas surrounding the Earth, the Van Allen Belts, would be an optimal place to put orbiting telecommunications satellites, Horton says. Unfortunately, it’s the worst environment for a satellite. The radiation there can be 100 times stronger than that found in geosynchronous orbit, where most satellites operate.

“It takes less fuel to launch a satellite into the Van Allen Belt region since that area is not as far away as geosynchronous orbit, so satellites in that closer orbit would improve on the time it takes signals to be transmitted around the world,” Horton says. “Using our radiation-hard technology, satellites could be used closer to the Van Allen Belt. Also, if this technology were to be used in geosynchronous satellites, they still would operate at higher efficiency over a longer period of time that what’s up there now.”

Freundlich and Horton also are working on a variation of solar cell technology, called thermophotovoltaics, or TPVs, which directly convert heat into electricity. While the concept is not new, the UH researchers say there is a “renewed interest in an older field.” As an example, the technology could be used to power deep space exploration spacecraft in conjunction with a radioactive source to generate the necessary heat.

The UH scientists are using nanotechnology to change the structure of existing TPV materials in a way that extends the amount of infrared radiation the device can convert to electricity. This modification allows the UH materials to operate at much higher efficiencies and lower temperatures than existing TPV technologies.

Because the UH TPVs are much more efficient than those currently used in the space program, the technology may increase the longevity and range of deep-space missions, Horton says.

“The temperature of the heat source for our material needs to be about 900 to 1000 degrees Celsius to generate useful electricity. It doesn’t matter what the source of the heat is,” Horton says. “Using this technology to capture the heat generated at the heart of the coals in your barbeque grill, at about 800 to 900 degrees, you could generate enough electricity to run kitchen appliances. These devices could operate using the excess heat produced by boilers in power plants, for example. The energy that is currently wasted could be recuperated.”
The UH innovations in TPVs also could be used to create cleaner-burning car engines.

“A car utilizing this technology would still burn gasoline, but would be powered by TPV-generated electricity,” Freundlich says. “Because the gasoline would burn and not explode as in a conventional engine, the gasoline would burn more efficiently and burn completely, thus producing much less harmful emissions. Such a car would use less gas, and you can still use gas stations.”

Also, because the TPVs absorb the infrared radiation from the engine, the vehicle would be invisible to night vision, which could be important for military operations, Freundlich says.

NASA, the state of Texas and private industry have funded Horton’s and Freundlich’s research.

About the University of Houston

The University of Houston, Texas’ premier metropolitan research and teaching institution, is home to more than 40 research centers and institutes and sponsors more than 300 partnerships with corporate, civic and governmental entities. UH, the most diverse research university in the country, stands at the forefront of education, research and service with more than 34,400 students.

Amanda Siegfried | University of Houston

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>