Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wisconsin team engineers hydrogen from biomass

29.08.2002


In the search for a nonpolluting energy source, hydrogen is often cited as a potential source of unlimited clean power. But hydrogen is only as clean as the process used to make it. Currently, most hydrogen is made from fossil fuels like natural gas using multi-step and high-temperature processes.



Now, chemical engineers at the University of Wisconsin-Madison have developed a new process that produces hydrogen fuel from plants. This source of hydrogen is non-toxic, non-flammable and can be safely transported in the form of sugars.

Writing this week (Aug. 29) in the journal Nature, research scientist Randy Cortright, graduate student Rupali Davda and professor James Dumesic describe a process by which glucose, the same energy source used by most plants and animals, is converted to hydrogen, carbon dioxide, and gaseous alkanes with hydrogen constituting 50 percent of the products. More refined molecules such as ethylene glycol and methanol are almost completely converted to hydrogen and carbon dioxide.


"The process should be greenhouse-gas neutral," says Cortright. "Carbon dioxide is produced as a byproduct, but the plant biomass grown for hydrogen production will fix and store the carbon dioxide released the previous year."

Glucose is manufactured in vast quantities -- for example, in the form of corn syrup -- from corn starch, but can also be made from sugar beets, or low-cost biomass waste streams like paper mill sludge, cheese whey, corn stover or wood waste.

While hydrogen yields are higher for more refined molecules, Dumesic says glucose derived from waste biomass is likely to be the more practical candidate for cost effectively generating power.

"We believe we can make improvements to the catalyst and reactor design that will increase the amount of hydrogen we get from glucose," says Dumesic. "The alkane byproduct could be used to power an internal combustion engine or a solid-oxide fuel cell. Very little additional energy would be required to drive the process."

Because the Wisconsin process occurs in a liquid phase at low reaction temperatures (227 degrees C., 440 degrees F.) the hydrogen is made without the need to vaporize water. That represents a major energy savings compared to ethanol production or other conventional methods for producing hydrogen from fossil fuels based on vapor-phase, steam-reforming processes.

In addition, the low reaction temperatures result in very low carbon monoxide (CO) concentrations, making it possible to generate fuel-cell-grade hydrogen in a single-step process. The lack of CO in the hydrogen fuel clears a major obstacle to reliable fuel cell operation. CO poisons the electrode surfaces of low-temperature hydrogen fuel cells.

At current hydrogen yields, the team estimates the process could cost effectively generate electrical power. That, according to the Wisconsin researchers, assumes a low-cost biomass waste stream can be efficiently processed and fed into the system.

To be truly useful, the team says several process improvements must first be made. The platinum-based catalyst that drives the reaction is expensive and new combinations of catalysts and reactor configurations are needed to obtain higher hydrogen yields from more concentrated solutions of sugars.

James Dumesic | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>