Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wisconsin team engineers hydrogen from biomass

29.08.2002


In the search for a nonpolluting energy source, hydrogen is often cited as a potential source of unlimited clean power. But hydrogen is only as clean as the process used to make it. Currently, most hydrogen is made from fossil fuels like natural gas using multi-step and high-temperature processes.



Now, chemical engineers at the University of Wisconsin-Madison have developed a new process that produces hydrogen fuel from plants. This source of hydrogen is non-toxic, non-flammable and can be safely transported in the form of sugars.

Writing this week (Aug. 29) in the journal Nature, research scientist Randy Cortright, graduate student Rupali Davda and professor James Dumesic describe a process by which glucose, the same energy source used by most plants and animals, is converted to hydrogen, carbon dioxide, and gaseous alkanes with hydrogen constituting 50 percent of the products. More refined molecules such as ethylene glycol and methanol are almost completely converted to hydrogen and carbon dioxide.


"The process should be greenhouse-gas neutral," says Cortright. "Carbon dioxide is produced as a byproduct, but the plant biomass grown for hydrogen production will fix and store the carbon dioxide released the previous year."

Glucose is manufactured in vast quantities -- for example, in the form of corn syrup -- from corn starch, but can also be made from sugar beets, or low-cost biomass waste streams like paper mill sludge, cheese whey, corn stover or wood waste.

While hydrogen yields are higher for more refined molecules, Dumesic says glucose derived from waste biomass is likely to be the more practical candidate for cost effectively generating power.

"We believe we can make improvements to the catalyst and reactor design that will increase the amount of hydrogen we get from glucose," says Dumesic. "The alkane byproduct could be used to power an internal combustion engine or a solid-oxide fuel cell. Very little additional energy would be required to drive the process."

Because the Wisconsin process occurs in a liquid phase at low reaction temperatures (227 degrees C., 440 degrees F.) the hydrogen is made without the need to vaporize water. That represents a major energy savings compared to ethanol production or other conventional methods for producing hydrogen from fossil fuels based on vapor-phase, steam-reforming processes.

In addition, the low reaction temperatures result in very low carbon monoxide (CO) concentrations, making it possible to generate fuel-cell-grade hydrogen in a single-step process. The lack of CO in the hydrogen fuel clears a major obstacle to reliable fuel cell operation. CO poisons the electrode surfaces of low-temperature hydrogen fuel cells.

At current hydrogen yields, the team estimates the process could cost effectively generate electrical power. That, according to the Wisconsin researchers, assumes a low-cost biomass waste stream can be efficiently processed and fed into the system.

To be truly useful, the team says several process improvements must first be made. The platinum-based catalyst that drives the reaction is expensive and new combinations of catalysts and reactor configurations are needed to obtain higher hydrogen yields from more concentrated solutions of sugars.

James Dumesic | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>