Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology to provide cheap solar energy

18.07.2008
Research into new types of solar cells produced by nanotechnology will be described by Professor Darren Bagnall at the World Renewable Energy Conference in Glasgow which begins tomorrow.

Professor Bagnall and his Nano Group at the University of Southampton's School of Electronics and Computer Science (ECS) have conducted extensive research into how nanotechnologies can contribute to the creation of solar cells which can be manufactured on cheap flexible substrates rather than expensive silicon wafers by using nanoscale features that trap light.

Speaking in the conference session on Photovoltaic Technology on Tuesday 22 July, Professor Bagnall will deliver a presentation entitled: Biomimetics and plasmonics: capturing all of the light. He will describe how his group has investigated biomimetic optical structures, which copy the nano structures seen in nature so that they can develop solar cells which allow efficient light-trapping. One type of structure is based on an anti-reflective technique exploited by moth eyes. Others are based on metallic nanoparticles that form plasmonic structures.

'It is essential that a solar cell absorbs all of the light that is available,' he said. 'Thicker devices absorb more light and unfortunately the need to use thick layers (particularly in the case of silicon) drives up the cost and often degrades the electronic properties of devices. Effective light-trapping will allow many alternatives and systems to be considered and will allow lower quality (cheaper) material.’

For further details about the World Renewable Energy Conference, please visit: http://www.wrenuk.co.uk/wrecx.html

Helene Murphy | alfa
Further information:
http://www.wrenuk.co.uk/wrecx.html
http://www.soton.ac.uk

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>