Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ECO Computer by Solar Battery– Leading edge multicore technology

15.07.2008
In the future, we hope to use advanced multi-core processor to create high-performance cell phones driven by solar batteries, safer, comfortable and energy-saving automobiles, small, quiet desktop super-computers and small food generating robots driven by sunlight.

MULTICORE - FROM CELL PHONES TO SUPER COMPUTERS

A processor (the computer’s "brain", a circuit that runs programs) is embedded in all the IT devices used in daily life – cell phones, game devices, digital TVs, car navigation systems, personal computers, automobiles, robots and super computers. The way processors are made is now going through a change because computational speed can no longer be increased through improvements at the semiconductor integration level (the increased number of transistors that can be integrated on a chip by improving micro-fabrication techniques) utilizing the standard method of integrating one processor in one semiconductor chip. When the integration level improves, more arithmetic units (circuits that execute addition or multiplication) can be added to the processor, but we can neither generate an efficient program to run those units simultaneously nor cool the computer to an operable temperature using forced-air cooling. (As the integration level improves, the processor emits tremendous amounts of heat (power consumption). A well-known theory states that when the semi-conductor integration level increases, the chip’s surface temperature reaches almost the same temperature as the surface of the sun.)

A multi-core scheme is now attracting attention. This is a technology that controls power consumption (heat) while improving the integration level and processing capability; multiple processors (i.e., processor cores if they are integrated in a chip) are integrated in one chip. (See Figure 1: 1 cm x 1cm chip with 8 integrated processor cores)

INDUSTRY-GOVERNMENT-ACADEMIC COLLABORATIVE RESEARCH IN A GOVERNMENT PROJECT

In the multi-core scheme, the aim is to speed operation by concurrently running multiple processors while the processor cores are run at a lower speed (operation frequency); less power is consumed thereby increasing control of power consumption. Power consumption increases relative to operation frequency and square of operation voltage. In the multi-core scheme, lowering the frequency allows for decreases in the voltage required to run the processors and reduce the power consumption. However, it is difficult to generate a program that runs multiple processors simultaneously. For example, you can divide one task into as many as eight smaller tasks for eight people and then complete the total task in one-eighth the time if all eight people work desperately and finish at the same time. These subtasks, however, are not "uniform"; for example, some sub-tasks must be done by just one person, or others require output from another subtask, etc. It is rather problematic to divide the tasks so that all subtasks can be efficiently finished in the shortest time.

For more than 20 years, we have been involved in this particular research and development, that is, dividing tasks (i.e. computer programs) and developing software (a parallelizing compiler) that automatically allocates tasks to processors. We have succeeded in developing parallelizing compiler technology for a government project ("Multi-core for Real-time IT Appliance") sponsored by the Ministry of Economy, Trade and Industry/NEDO. (This 3-year project begun in 2005). We designed multi-core hardware (multi-core chip) that utilizes this compiler technology; you can automatically divide calculations (e.g. scientific calculations, calculations to display videos on digital TVs or one-segment TV, calculations that compress music for portable music players (technology that "shrinks" data while maintaining audio quality)), allocate "divided calculation" tasks to multiple processors and perform calculations in minimum processing time. Figure 2 shows the processing capabilities in which a music compression program is automatically divided and allocated in up to eight processors. If the program is divided into four processors, the processing speed is 3.6 times faster than one processor; for eight processors it is 5.8 times.

It is also possible to apply this parallelizing compiler to parallelizing (dividing/allocating) a program not only to a developed multi-core chip but also to other types of multiple processors, such as widely available commercial servers (high-end fast computers) or multi-core personal computers. Intel provides a 4-core integrated multi-core (Quad-core Xeon) and IBM provides a 2-core integrated multi-core (Power 5+). We have implemented an 8-processer server (p550Q) to which the multi-core's from Intel and IBM have been connected and run world standard computer performance evaluation programs (SPEC, CFP95 and 2000). Our compiler demonstrated the world’s fastest processing speed to be twice as fast as the average for the parallelization compilers sold by both companies.

The research and development of this multi-core chip and the parallelization compiler (automatically generates a parallelized program for the multi-core processors provided by the companies above) has been successful because of strong support from Katsuhiko Shirai, President of Waseda University and the close collaboration of Associate Professor Keiji Kimura and students in the department’s KASAHARA Laboratory and KIMURA Laboratory who provided critical input; Hitachi and Renesas Technology partici-pants who actually developed the chips and PCB (Figure 3: Major participants and the author receiving the second prize in the LSI-Of-The-Year award on July 4, 2008); participants from Fujitsu, Toshiba, Matsushita and NEC who contributed to the discussion on the standard architectures (structure methods) and methods (API: Application Program Interface) to run the compiler in these multi-core processors.

"COOL EARTH" BY "COOL" MULTI-CORE CHIP

We also focused on significantly reducing power consumption in addition to improving processor performance. For example, adding a fan to cool a cell phone’s processor is not effective since the fan may be too noisy for people to talk. Our goal was to develop a multi-core chip that consumes 3 watts or less and which can be cooled by natural air. It is estimated that the power consumption of a super computer will be at the level of several 10s of millions of watts in several years and at several 100s of millions of watts in 10 years. One whole power plant will be needed to cool one super computer. The situation is critical.

In view of this background, we have developed a parallelization compiler that can instantaneously cut the power to a processor which is idle after the compiler has assigned tasks to the processors; you can slow the operation speed (frequency) to 1/2, 1/4 or 1/8 or 0 (i.e., to "sleep") for those idle processors and you can control the voltage to 1.4V, 1.2V and 1.0V. This has allowed us to succeed in controlling the multi-core power by the parallelization compiler for the first time in the world; this can be sum-marized as shown in Figure 4, where power consumption can be reduced 74%, from 5.7W to 1.5W, in a calculation to display video in digital TV and one-segmentation TV, or for 88%, from 5.7W to 0.7W of the music compression program.

Cooling a "hot" chip (power consumption) requires more electrical power in the air-cooling or water-cooling mechanism. This "cool" chip, as introduced in the "Council for Science and Technology Policy, Cabinet Office" on April 10, 2008, would go a long way in realizing Japan’s goal of a "Cool Earth".

In addition, as shown in Figure 5, the multi-core chip developed can be run at lower power, allowing the chip to be run by a solar panel (solar battery).

In the future, we hope we can use the advanced multi-core processor to create high-performance cell phones driven by solar batteries, automobiles that are safer, more comfortable and energy-saving, desktop super-computers that are quiet and small, and food generating robots driven by sunlight.

Hironori Kasahara, Professor
Faculty of Science and Engineering
Waseda University

Hironori Kasahara | ResearchSEA
Further information:
http://www.waseda.jp
http://www.yomiuri.co.jp/adv/wol/dy/
http://www.kasahara.cs.waseda.ac.jp/

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>