Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The robot that climbs in the pipe

24.06.2008
Industrial pipe systems are inaccessible and narrow. The pipes can be vertical and have junctions. Just as challenging, leakage points in the water system must be located, the condition of oil and gas pipelines must be checked and ventilation systems need to be cleaned.

In the main, today’s robots are not that clever. They cannot climb or navigate in vertical pipes – and very few have active joints.

Cybernetics and optical measurement scientists at SINTEF are working on a solution.

Navigation by light and image
With experience and knowledge acquired with snake robots Anna Konda and AiKo as a starting point, a team is now developing an intelligent pipe inspection robot on wheels that will be able to climb, navigate intersections and at any given time know its location in the pipe system.

The inspection robot will be able to move in pipes of various diameters, right down to 20 cm. Cybernetics scientists are developing the propulsion system while a team of optics scientists is working on the new robot’s visual system.

“We are currently developing the vision system than will enable the robot to navigate,” says Jens Thielemann at SINTEF ICT. “In the meantime, we are using the lego robot Mindstormer to collect the data to train the vision system. This lego robot has a camera attached and moves around the pipe following a pre-programmed map. The next step will be to utilise the vision system as input to control the actual snake robot we are going to develop.”

The camera that will provide the new robot’s vision is an off the shelf time-of-flight camera that provides a bathymetric chart of the pipe system using inflected light.

“Combined with our algorithms, the robot will be able to navigate and move forward on its own,” says Thielemann. “The robot knows when a left or right turn is approaching and also contains a built-in path description detailing what tasks it should carry out in different situations.

Functions as a train
“Given our previous work on snake robots, we have become good at controlling mechanisms that are linked,” says SINTEF cybernetics scientist Erik Kyrkjebø.

“We now want to develop a robot with 10-11 joint modules, each with an identical pair of wheels cast in plastic. The weight must be well distributed between the joints. For example, can we put the camera and accelerator motor in two different joint modules? The robot will function as a train when operating horizontally. Such robots already exist, but we want to develop a robot that can climb too.”

The scientists have designed several versions of the pipe inspection robot and have tested different solutions in order to make the new robot both mobile and compact. They have now come up with a design they have faith in.

Twisting upwards
When the robot enters a vertical pipe, it lifts its head in the pipe and meets the pipe wall. It can then either move sideways with its abdomen against the pipe and twist itself upwards or it can topple backwards, attach itself to the pipe wall, in the same way as we would put our feet against a shaft wall to hold on, and then roll upwards.

The scientists emphasise that the project is at the design stage. In June, two of the 11 joint modules will be tested to verify the concept and they hope to demonstrate a prototype model by the end of the year. This comprises just phase one of an industrial development, but the enthusiastic scientists are confident of succeeding in the foreseeable future. The final version of the robot will be constructed of aluminium and is planned to be 1.5 m long.

Aase Dragland | alfa
Further information:
http://www.sintef.com

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>