Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The robot that climbs in the pipe

24.06.2008
Industrial pipe systems are inaccessible and narrow. The pipes can be vertical and have junctions. Just as challenging, leakage points in the water system must be located, the condition of oil and gas pipelines must be checked and ventilation systems need to be cleaned.

In the main, today’s robots are not that clever. They cannot climb or navigate in vertical pipes – and very few have active joints.

Cybernetics and optical measurement scientists at SINTEF are working on a solution.

Navigation by light and image
With experience and knowledge acquired with snake robots Anna Konda and AiKo as a starting point, a team is now developing an intelligent pipe inspection robot on wheels that will be able to climb, navigate intersections and at any given time know its location in the pipe system.

The inspection robot will be able to move in pipes of various diameters, right down to 20 cm. Cybernetics scientists are developing the propulsion system while a team of optics scientists is working on the new robot’s visual system.

“We are currently developing the vision system than will enable the robot to navigate,” says Jens Thielemann at SINTEF ICT. “In the meantime, we are using the lego robot Mindstormer to collect the data to train the vision system. This lego robot has a camera attached and moves around the pipe following a pre-programmed map. The next step will be to utilise the vision system as input to control the actual snake robot we are going to develop.”

The camera that will provide the new robot’s vision is an off the shelf time-of-flight camera that provides a bathymetric chart of the pipe system using inflected light.

“Combined with our algorithms, the robot will be able to navigate and move forward on its own,” says Thielemann. “The robot knows when a left or right turn is approaching and also contains a built-in path description detailing what tasks it should carry out in different situations.

Functions as a train
“Given our previous work on snake robots, we have become good at controlling mechanisms that are linked,” says SINTEF cybernetics scientist Erik Kyrkjebø.

“We now want to develop a robot with 10-11 joint modules, each with an identical pair of wheels cast in plastic. The weight must be well distributed between the joints. For example, can we put the camera and accelerator motor in two different joint modules? The robot will function as a train when operating horizontally. Such robots already exist, but we want to develop a robot that can climb too.”

The scientists have designed several versions of the pipe inspection robot and have tested different solutions in order to make the new robot both mobile and compact. They have now come up with a design they have faith in.

Twisting upwards
When the robot enters a vertical pipe, it lifts its head in the pipe and meets the pipe wall. It can then either move sideways with its abdomen against the pipe and twist itself upwards or it can topple backwards, attach itself to the pipe wall, in the same way as we would put our feet against a shaft wall to hold on, and then roll upwards.

The scientists emphasise that the project is at the design stage. In June, two of the 11 joint modules will be tested to verify the concept and they hope to demonstrate a prototype model by the end of the year. This comprises just phase one of an industrial development, but the enthusiastic scientists are confident of succeeding in the foreseeable future. The final version of the robot will be constructed of aluminium and is planned to be 1.5 m long.

Aase Dragland | alfa
Further information:
http://www.sintef.com

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>