Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Superconductors Present New Mysteries, Possibilities

06.06.2008
Researchers have unlocked some of the secrets of newly discovered iron-based high-temperature superconductors, research that could result in the design of better superconductors for use in industry, medicine, transportation and energy generation.

Johns Hopkins University researchers and colleagues in China have unlocked some of the secrets of newly discovered iron-based high-temperature superconductors, research that could result in the design of better superconductors for use in industry, medicine, transportation and energy generation.

In an article published today in the journal Nature, the team, led by Chia-Ling Chien, the Jacob L. Hain Professor of Physics and director of the Material Research Science and Engineering Center at The Johns Hopkins University, offers insights into why the characteristics of a new family of iron-based superconductors reveal the need for fresh theoretical models which could, they say, pave the way for the development of superconductors that can operate at room temperature.

“It appears to us that the new iron-based superconductors disclose a new physics, contain new mysteries and may start us along an uncharted pathway to room temperature superconductivity,” said Chien, who teamed up on the research with Tingyong Chen and Zlatko Tesanovic, both of Johns Hopkins, and X.H. Chen and R.H. Liu of the Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China in Anhui, China.

Superconductors are materials that can carry electrical current without friction and as a result, don’t waste electrical energy generating heat. (Imagine your laptop computer or PC not getting warm when it is turned on.) This means that an electrical current can flow in a loop of superconducting wire forever without a power source. Today, superconductors are used in hospital MRI machines, as filters in cell phone base stations and in high-speed magnetic levitating trains. Unfortunately, most of today’s superconducting materials can only function and operate at extremely low temperatures, which means that they must be paired with expensive supercooling equipment. This presents researchers with a grand challenge: to find superconducting material that can operate at more “normal” temperatures.

“If superconductors could exist at room temperatures, the world energy crisis would be solved,” Chen said.

Chen explains that though all metals contain mobile electrons which conduct electricity, a metal becomes a superconductor only when two electrons with opposite “spins” are paired. The superconductor energy “gap,” which is the amount of energy that would be needed to break the bond between two electrons forming such a pair to release them from one another, determines the robustness or strength of the superconducting state. This energy gap is highest at low temperatures, but vanishes at the temperatures at which superconductivity ceases to exist.

“This gap -- its structure and temperature dependence -- reveal the ‘soul’ of the superconductor, and this is what was measured in our experiment,” Chien said.

The team measured this gap and its temperature variation, revealing that the pairing mechanism in iron-based superconductors is different from the one in more traditional, copper-based, high-temperature superconductors. To the researchers’ surprise, their results were incompatible with some of the newly proposed theories in this mushrooming field.

“In the face of this discovery, it is clear that we need to reexamine the old and invent some new theoretical models,” Tesanovic said. “I predict that these new, iron-based superconductors will keep us physicists busy for a long, long while.”

This research was supported by the U.S. National Science Foundation and the Natural Science Foundation of China.

Lisa De Nike | newswise
Further information:
http://www.jhu.edu

More articles from Power and Electrical Engineering:

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

nachricht Magic off the cuff
11.07.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>