Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Colourful idea sparks renewable electricity from paint

Researchers at Swansea University are developing a new, eco-friendly technology that could generate as much electricity as 50 wind farms.

Dr Dave Worsley, a Reader in the Materials Research Centre at the University’s School of Engineering, is investigating ways of painting solar cells onto the flexible steel surfaces commonly used for cladding buildings.

“We have been collaborating with the steel industry for decades,” explains Dr Worsely, “but have tended to focus our attention on improving the long-term durability and corrosion-resistance of the steel. We haven’t really paid much attention to how we can make the outside of the steel capable of doing something other than looking good.

“One of our Engineering Doctorate students was researching how sunlight interacts with paint and degrades it, which led to us developing a new photovoltaic method of capturing solar energy.”

Unlike conventional solar cells, the materials being developed at Swansea are more efficient at capturing low light radiation, meaning that they are better suited to the British climate.

A research grant from the Welsh Assembly Government’s Welsh Energy Research Centre (WERC) enabled Dr Worsley to work with leading metals group Corus to investigate the feasibility of developing an efficient solar cell system that can be applied to steel building products.

The success of the study led to the award of a three-year project worth over £1.5 million by the Engineering and Physical Sciences Research Council (EPSRC).

Swansea University is now leading a partnership with Bangor University, University of Bath, and the Imperial College London to develop commercially viable photovoltaic materials for use within the steel industry.

Paint is applied to steel when it is passed through rollers during the manufacturing process, and it is hoped that the same approach can be used to build up layers of the solar cell system. The researchers’ aim is to produce cells that can be painted onto a flexible steel surface at a rate of 30-40m2 a minute.

Dr Worsley believes that the potential for the product is immense.

He said: “Corus Colours produces around 100 million square metres of steel building cladding a year. If this was treated with the photovoltaic material, and assuming a conservative 5% energy conversion rate, then we could be looking at generating 4,500 gigawatts of electricity through the solar cells annually. That’s the equivalent output of roughly 50 wind farms.”

Dr Worsley will be working closely with Corus to research practical, cost-efficient methods of mounting the system on steel structures, with a view to the eventual commercialisation of the product.

He said: “This project is a superb example of the value of collaboration between universities and industry, and it is definitely important for Wales. We have a genuine opportunity to ensure that Wales remains at the forefront of this technology worldwide, driving the industry and revolutionising our capacity to generate electricity.

“I think it shows great vision from the Welsh Assembly Government that they funded the initial feasibility study. Even if we are only mildly successful with this project, there is no doubt that we will be creating an exciting hi-tech steel product that will preserve the long term future of the Welsh steel industry.”

For more information about the School of Engineering at Swansea University visit

Bethan Evans | alfa
Further information:

More articles from Power and Electrical Engineering:

nachricht New method increases energy density in lithium batteries
24.10.2016 | Columbia University School of Engineering and Applied Science

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

Scientists discover particles similar to Majorana fermions

25.10.2016 | Physics and Astronomy

Phenotype at the push of a button

25.10.2016 | Life Sciences

More VideoLinks >>>