Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colourful idea sparks renewable electricity from paint

06.03.2008
Researchers at Swansea University are developing a new, eco-friendly technology that could generate as much electricity as 50 wind farms.

Dr Dave Worsley, a Reader in the Materials Research Centre at the University’s School of Engineering, is investigating ways of painting solar cells onto the flexible steel surfaces commonly used for cladding buildings.

“We have been collaborating with the steel industry for decades,” explains Dr Worsely, “but have tended to focus our attention on improving the long-term durability and corrosion-resistance of the steel. We haven’t really paid much attention to how we can make the outside of the steel capable of doing something other than looking good.

“One of our Engineering Doctorate students was researching how sunlight interacts with paint and degrades it, which led to us developing a new photovoltaic method of capturing solar energy.”

Unlike conventional solar cells, the materials being developed at Swansea are more efficient at capturing low light radiation, meaning that they are better suited to the British climate.

A research grant from the Welsh Assembly Government’s Welsh Energy Research Centre (WERC) enabled Dr Worsley to work with leading metals group Corus to investigate the feasibility of developing an efficient solar cell system that can be applied to steel building products.

The success of the study led to the award of a three-year project worth over £1.5 million by the Engineering and Physical Sciences Research Council (EPSRC).

Swansea University is now leading a partnership with Bangor University, University of Bath, and the Imperial College London to develop commercially viable photovoltaic materials for use within the steel industry.

Paint is applied to steel when it is passed through rollers during the manufacturing process, and it is hoped that the same approach can be used to build up layers of the solar cell system. The researchers’ aim is to produce cells that can be painted onto a flexible steel surface at a rate of 30-40m2 a minute.

Dr Worsley believes that the potential for the product is immense.

He said: “Corus Colours produces around 100 million square metres of steel building cladding a year. If this was treated with the photovoltaic material, and assuming a conservative 5% energy conversion rate, then we could be looking at generating 4,500 gigawatts of electricity through the solar cells annually. That’s the equivalent output of roughly 50 wind farms.”

Dr Worsley will be working closely with Corus to research practical, cost-efficient methods of mounting the system on steel structures, with a view to the eventual commercialisation of the product.

He said: “This project is a superb example of the value of collaboration between universities and industry, and it is definitely important for Wales. We have a genuine opportunity to ensure that Wales remains at the forefront of this technology worldwide, driving the industry and revolutionising our capacity to generate electricity.

“I think it shows great vision from the Welsh Assembly Government that they funded the initial feasibility study. Even if we are only mildly successful with this project, there is no doubt that we will be creating an exciting hi-tech steel product that will preserve the long term future of the Welsh steel industry.”

For more information about the School of Engineering at Swansea University visit http://www.swan.ac.uk/engineering/

Bethan Evans | alfa
Further information:
http://www.swan.ac.uk/engineering/

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>