Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New understanding for superconductivity at high temperatures

14.01.2008
University of Montreal physicist and international team share findings in Science

An international research team has discovered that a magnetic field can interact with the electrons in a superconductor in ways never before observed. Andrea D. Bianchi, the lead researcher from the Université de Montréal, explains in the January 11 edition of Science magazine what he discovered in an exceptional compound of metals – a combination of cobalt, indium and a rare earth – that loses its resistance when cooled to just a couple of degrees above absolute zero.

“This discovery sharpens our understanding of what, literally, holds the world together and brings physicists one step closer to getting a grip on superconductivity at high temperatures. Until now, physicists were going around in circles, so this discovery will help to drive new understanding,” said Prof. Bianchi, who was recruited to UdeM as a Canada Research Chair in Novel Materials for Spintronics last fall and performed his experiments at the Paul Scherrer Institute in Switzerland, in collaboration with scientists from ETH Zurich, the University of Notre Dame, the University of Birmingham, U.K., the Los Alamos National Laboratory and the Brookhaven National Laboratory.

Magnetic tornado that grows stronger

Using the Swiss Spallation Neutron Source (SINQ), Prof. Bianchi and his team cooled a single-crystal sample of CeCoIn5 down to 50mK above absolute zero and applied a magnetic field nearly high enough to entirely suppress superconductivity. They found that the core of the vortices feature electronic spins that are partly aligned with the magnetic field. This is the first experimental evidence that a theory that describes the properties of superconducting vortices and, for which Abrikosov and Ginzburg received the Nobel Prize in 2003, which does not generally apply in magnetically-induced superconductors.

“When subjected to intense magnetic fields, these materials produce a completely new type of magnetic tornado that grows stronger with increasing fields rather than weakening,” said Prof. Bianchi. “The beauty of this compound is how we can experiment without breaking it.”

Superconductors hold great promise for technological applications that will change how modern civilization can store and transmit energy - arguably some of the most pressing challenges today. Other notable applications include superconducting digital filters for high-speed communications, more efficient and reliable generators and motors, and superconducting device applications in medical magnetic resonance imaging machines. The first superconductor was discovered nearly a hundred years ago, and in most materials this curious state with no resistance was shown to arise from the interaction of the electrons with the crystal; however, in this new material, superconductivity is thought to arise from magnetic interactions between electrons.

Andrea Bianchi | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>