Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rensselaer Polytechnic Institute Illuminates the Future of Lighting

25.05.2011
Energy@Rensselaer: Rensselaer Polytechnic Institute Illuminates the Future of Lighting

University’s Pair of World-Class Research Centers Investigate the “Whys and Hows” of Lighting

Lighting technology touches nearly everything we do—from illuminating our homes and workplaces, to making a left turn at an intersection, or snapping a photo with a cell phone. Given the sheer ubiquity of lighting, it’s easy to take the technology for granted—but lighting is the subject of intense scrutiny by scientists at two Rensselaer Polytechnic Institute research centers.

The field of lighting is undergoing a fascinating, revolutionary transformation. The century-old light bulb is steadily ceding ground to its high-tech successor, the light-emitting diode (LED). While the promise of LEDs as a long-lived, energy-efficient heir to light bulbs is undeniable, the true promise of LED and solid-state lighting technology transcends illumination. LEDs offer the potential to control, manipulate, and use light in entirely new ways for a surprisingly diverse range of areas. Our understanding of all types of lighting continues to grow.

Rensselaer is a leading voice in expanding the frontier of lighting research. The university has assembled a critical mass of experts and researchers who are investigating the full spectrum of lighting and lighting research. Much of this innovation is facilitated through a pair of world-class, industry-focused research centers: the Lighting Research Center (LRC) and the Smart Lighting Engineering Research Center (ERC). The complementary centers, both situated about 25 kilometers east of where Thomas Edison perfected the first mass-produced incandescent light bulb, are using lighting to create a brighter, more sustainable future.

Established in 1988, the LRC has built an international reputation as a reliable source for objective information about lighting technologies and applications. The ERC, launched in 2008, is developing new technologies and applications for improved and smarter lighting devices and systems.

“LEDs and lighting research present a rich opportunity, in terms of energy efficiency and human health, and toward unearthing a host of yet-undiscovered applications,” said Rensselaer President Shirley Ann Jackson. “With innovation, ingenuity, and old-fashioned hard work, the LRC and ERC at Rensselaer are rewriting the rules for making, manipulating, exploiting, and understanding the effects of lighting. And by partnering closely with industry, we are ensuring these new technologies are moving swiftly from the lab to the marketplace.”

Lighting Research Center

The LRC is the world's leading university-based research and education organization devoted to lighting. Programs and activities at the center include laboratory testing and real-world demonstration and evaluation of lighting products, while also conducting research into energy efficiency, new products and technologies, lighting design, and human factors issues. The LRC offers a doctoral program and one- and two-year master’s degree programs in lighting, as well as global training programs for government agencies, utilities, contractors, lighting designers, and other lighting professionals.

“We see the LRC as the nucleus for independent lighting research and education, as well as the pre-eminent source of objective, timely information about lighting technologies, applications, and about human response to light,” said Rensselaer Professor and LRC Director Mark Rea. “For more than two decades, the LRC has transformed science into real-world applications, while always remaining true to its mission—advancing the effective use of light for society and the environment.”

For example, research by Rensselaer Professor Nadarajah Narendran led to the development of the Scattered Photon Extraction method for improving white LED performance by more than 30 percent. Globally, the LRC is performing laboratory testing of LED-based, off-grid lighting products under a World Bank Group contract to improve access to modern, clean lighting in Sub-Saharan Africa. In another project, Rensselaer Associate Professor Mariana Figueiro conducted the first field studies examining how light impacts teenagers’ sleeping habits and school performance, contributing to a new daylighting design guide for schools by Rensselaer Professor Russ Leslie.

Smart Lighting ERC

Just as the transistor revolutionized modern electronics, LEDs are poised to enable the next generation of future lighting systems with radically new capabilities. The Smart Lighting Engineering Research Center at Rensselaer, funded primarily by the National Science Foundation, is advancing the fundamental scientific and engineering approaches required to realize this potential of LEDs and solid-state lighting. The ERC team is working to create better LEDs, as well as new sensors and systems required to effectively to monitor and control these LEDs.

“We see the ERC as the advanced research engine for future solid-state lighting systems that will bring a vast new range of capabilities to lighting,” said Rensselaer Professor and ERC Director Robert Karlicek. “We currently work with the LRC to define critical human-factor considerations for lighting to ensure that future LED luminaires, lighting sensors, and control technologies are both energy efficient and optimized for human health and safety. These lighting solutions provide additional benefits, including data delivery and efficient, vivid displays.”

In one project, Rensselaer Professor Partha Dutta works with an interdisciplinary team of undergraduate students to demonstrate the feasibility of LCD-based virtual windows. To make virtual window technology a reality, the displays need to be bright and efficient enough to reproduce light from an actual window. Rensselaer Professors Christian Wetzel and Shawn-Yu Lin are developing the technologies needed to create a family of polarized LEDs in various colors that will achieve the required brightness and reduction in energy consumption.

Energy and the Environment

Lighting and lighting research at Rensselaer fall under the university’s strategic research thrust of Energy and the Environment. The research leaders who work, study, and innovate at Rensselaer share a common focus: unearthing new opportunities for solving the 21st century’s most challenging problems.

“Lighting for illumination, and for televisions and other display devices, comprises a considerable percentage of energy usage in the United States and around the world,” said Rensselaer Provost Robert Palazzo. “This challenge presents an opportunity, and Rensselaer—particularly through the ERC and LRC—is deeply committed to innovating solutions for greater efficiency in lighting technologies and applications.”

Right now, more than 6.5 billion people are competing for the Earth’s dwindling supply of fossil fuels. By 2050, there will be 8 to 10 billion, and major advances in energy technology will be required to meet their needs. Rensselaer has faced that challenge by launching and expanding programs in renewable energy sources and energy conservation. The Institute is also dedicated to tackling major environmental concerns, including sustainable development and the global need for clean water. Lighting technology is a key component of this strategic thrust.

“The ERC is focused on educating a new class of electrical engineers and materials scientists who understand both the fundamental physical science and engineering of advanced solid-state lighting systems,” said David Rosowsky, dean of the School of Engineering at Rensselaer. “This is a critical component of our mission to educate the next generation of engineering leaders, who have the multidisciplinary knowledge and experience to innovate local solutions to the grand, global challenges we will face in the coming decades.”

For more information on the LRC and Smart Lighting ERC at Rensselaer, visit:

• Lighting Research Center
http://www.lrc.rpi.edu/
• Smart Lighting ERC
http://smartlighting.rpi.edu/
• Energy@Rensselaer: Zeroing in on the Elusive Green LED
http://news.rpi.edu/update.do?artcenterkey=2860
• NSF Launches an ERC To Develop Smart Lighting
http://1.usa.gov/htftQh
• Smart Lighting ERC Deploys New Technology on Campus
http://www.rpi.edu/about/inside/issue/v4n17/lighting.html
• First Field Studies on the Impact of Light on Teenagers’ Sleeping Habits
http://www.lrc.rpi.edu/programs/lightHealth/projects/K12light.asp
• World Bank Group Selects LRC To Test LED-based, Off-grid Lighting Products in Support of Lighting Africa Program

http://www.lrc.rpi.edu/resources/newsroom/pr_story.asp?id=197

• Bringing Advanced, Energy-Efficient LED Lighting to Aviation
http://www.lrc.rpi.edu/programs/solidstate/aviation.asp
• Improving LED Light Output and Efficacy Through SPE
http://www.lrc.rpi.edu/programs/solidstate/speLED.asp
Contact
Michael Mullaney
Rensselaer Polytechnic Institute
Troy, NY
518-276-6161
mullam@rpi.edu
www.rpi.edu/news
Visit the Rensselaer research and discovery blog: http://approach.rpi.edu
Follow us on Twitter: www.twitter.com/RPInews

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu/news

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
29.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>