Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Putting Data Centers on a Low-Energy Diet

A holistic approach to data centers could result in millions of dollars of savings and a far smaller carbon footprint for the ever-expanding universe of information technology.

That’s the promise of research conducted by Binghamton University colleagues Kanad Ghose, a professor of computer science, and Bahgat Sammakia, a professor of mechanical engineering and director of the University’s New York State Center of Excellence in Small Scale Systems Packaging and Integration, or S3IP.

“The amount of energy we spend on running our data centers in the U.S. is about 2.5 percent of the total national energy expenditure,” Ghose said. “That doesn’t sound like a big number, but it’s enough to power a couple of good-sized cities for most of the year.”

The statistics are “sobering,” Ghose said. The number of data centers is growing rapidly because of increasing demand for online services for everything from medical records to shopping.

“The unfortunate fact is there’s a lot of waste in this,” Ghose said. “All data centers are ‘overprovisioned.’ They’re designed to handle the peak loads. And most of the time, they operate at 40 to 60 percent of that. When data centers run at a lower than peak load, the energy efficiency is very poor.”

There are also inherent inefficiencies, in part because most servers run on the Linux operating system, which doesn’t have good power management solutions for servers. That’s just the bad news from the information technology side. Then there’s the cooling.

“The cooling solutions are also overprovisioned,” Ghose said. “Data centers run hot because a lot of machines are packed into a small space. The loads in a data center fluctuate, and you cannot track that changing load fast enough in a cooling system, so you end up playing it safe. There’s an enormous amount of waste.”

Most of the facilities use chilled water, and it takes some time to lower or raise the temperature of the water by 5 degrees. New York state alone spends close to $600 million on utility costs for running its data centers. Half goes to power the computers; the other half is spent on cooling. And utility costs continue to rise.

Most researchers focus on smart workload management when they talk about “green” data centers, but Ghose and Sammakia say that’s not enough. They’re looking for a comprehensive solution. That will mean finding a way to spread the workload across all the machines, planning in advance for the workload allocation and the cooling budget. Ultimately, it means exercising cooling activities and workload activities synergistically.

Just-in-time provisioning of IT resources and just-in-time cooling are the keys here, said Ghose, who expects to set up an experimental data center with Sammakia and other collaborators soon. Companies such as Emerson Network Power and IBM have already expressed interest in the project.

Sammakia, who’s also the University’s executive director of economic development, said the test facility will give a boost to companies in the region and beyond.

“Over the next five years, this will help us create hundreds of local jobs and attract companies to the area,” he said. “It will allow New York state and national companies to showcase their energy-efficiency projects.

“It’s a test facility, but at the same time it’s a real, operational data center. Each company will come in with its latest and greatest equipment.”

Ghose said an innovation that results in an energy reduction of, say, 15 percent could make a big splash. He believes their solution could result in savings of more than 25 percent. And the lessons drawn from data centers could pay off for desktop computers as well.

“The writing’s on the wall,” Ghose said. “Unless we address this now, things will become worse. Most server vendors are trying to pack more into the same space and making the problem worse. What makes it worse is the amount of heat you produce in one cubic foot of space. That’s going up significantly because things are becoming smaller and faster. And of course there’s a carbon footprint, the more energy you spend.”

Gail Glover | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>