Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purple Light Means Go, Ultraviolet Light Means Stop

02.08.2010
Unique light-activated membrane acts like a traffic signal for gas

A new membrane developed at the University of Rochester's Laboratory for Laser Energetics blocks gas from flowing through it when one color of light is shined on its surface, and permits gas to flow through when another color of light is used. It is the first time that scientists have developed a membrane that can be controlled in this way by light.

Eric Glowacki, a graduate student at the University's Laboratory for Laser Energetics, and Kenneth Marshall, his advisor, invented the membrane. Marshall will present their findings at the annual conference of the International Society for Optics and Photonics (SPIE) in San Diego on Aug. 1.

The membrane is a piece of hard plastic riddled with tiny holes that are filled with liquid crystals and a dye. When purple light illuminates the surface of the membrane, the dye molecules straighten out and the liquid crystals fall into line, which allows gas to easily flow through the holes. But when ultraviolet light illuminates the surface, the dye molecules bend into a banana shape and the liquid crystals scatter into random orientations, clogging the tunnel and blocking gas from penetrating.

Controlling a membrane's permeability with light is preferable to controlling it with heat or electricity – two readily used alternative methods – for several reasons, Glowacki said. For starters, light can operate remotely. Instead of attaching electrical lines to the membrane, a lamp or a laser can be directed at the membrane from a distance. This could allow engineers to make much smaller, simpler setups.

Another advantage is that the color of the light illuminating the membrane can be changed precisely and almost instantaneously. Other methods, like heating and cooling, take a relatively long time and repeated heating and cooling can damage the membrane.

Also, light does not have the potential to ignite a gas, which could be a crucial benefit when working with hydrocarbons or other flammable gases. Lastly, the amount of light energy needed to switch the membrane on and off is miniscule.

Creating the membrane is a multi-step process. First, a circular hard plastic chip is bombarded with a beam of neutrons to make the tiny, evenly spaced holes that are about one-hundredth of a millimeter in diameter. The chip is then dipped in a solution of liquid crystals and dye, and the mixture fills the holes through capillary action. The final product is spun in a centrifuge to remove the excess liquid crystals from the surface.

The membrane could be useful in controlled drug delivery and industrial processing tasks that require the ability to turn the flow of gas on and off as well as in research applications.

Contact: Alan Blank
alan.blank@rochester.edu
585-275-2671
About the University of Rochester
The University of Rochester is one of the nation’s leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College, School of Arts and Sciences, and Hajim School of Engineering and Applied Sciences are complemented by its Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, Schools of Medicine and Dentistry and Nursing, and the Memorial Art Gallery.

Alan Blank | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>